
 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

LOGICAL TIME

Logical clocks are based on capturing chronological and causal relationships of processes and

ordering events based on these relationships.

 Precise physical clocking is not possible in distributed systems. The asynchronous

distributed systems spans logical clock for coordinating the events.Three types of logical

clock are maintained in distributed systems:

 Scalar clock

 Vector clock

 Matrix clock

In a system of logical clocks, every process has a logical clock that is advanced using a set

of rules. Every event is assigned a timestamp and the causality relation between events can

be generally inferred from their timestamps.

The timestamps assigned to events obey the fundamental monotonicity property; that is, if

an event a causally affects an event b, then the timestamp of a is smaller than the timestamp

of b.

Differences between physical and logical clock

Physical Clock Logical Clock

A physical clock is a physical procedure

combined with a strategy for measuring that

procedure to record the progression of time.

A logical clock is a component for catching

sequential and causal connections in a dispersed

framework.

The physical clocks are based on cyclic

processes such as a

celestial rotation.

A logical clock allows global ordering on

events from different processes.

A Framework for a system of logical clocks

A system of logical clocks consists of a time domain T and a logical clock C. Elements of T form a

partially ordered set over a relation <. This relation is usually called the happened before or

causal precedence.

The logical clock C is a function that maps an event e in a distributed system to an element

in the time domain T denoted as C(e).

such that

for any two events ei and ej,. eiej C(ei)< C(ej).

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

This monotonicity property is called the clock consistency condition.When T and C satisfy

the following condition,

Then the system of clocks is strongly consistent.

Implementing logical clocks

 The two major issues in implanting logical clocks are:

Data structures: representation of each process

Protocols: rules for updating the data structures to ensure consistent conditions.

Data structures:

 Each process pimaintains data structures with the given capabilities:

• A local logical clock (lci), that helps process pi measure itsown progress.

• A logical global clock (gci), that is a representation of process pi’s local view of the logical

global time. It allows this process to assignconsistent timestamps to its local events.

Protocol:

The protocol ensures that a process’s logical clock, and thus its view of theglobal time, is

managed consistently with the following rules:

Rule 1: Decides the updates of the logical clock by a process. It controls send, receive and

other operations.

Rule 2: Decides how a process updates its global logical clock to update its view of the

global time and global progress. It dictates what information about the logical time is

piggybacked in a message and how this information is used by the receiving process to

update its view of the global time.

SCALAR TIME

 Scalar time is designed by Lamport to synchronize all the events in distributed

systems. A Lamport logical clock is an incrementing counter maintained in each process.

This logical clock has meaning only in relation to messages moving between processes.

When a process receives a message, it resynchronizes its logical clock with that sender

maintainingcausal relationship.

 The Lamport’s algorithm is governed using the following rules:

 The algorithm of Lamport Timestamps can be captured in a few rules:

 All the process counters start with value 0.

 A process increments its counter for each event (internal event, message sending,

message receiving) in that process.

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

 When a process sends a message, it includes its (incremented) counter value with the

message.

 On receiving a message, the counter of the recipient is updated to the greater of its

current counter and the timestamp in the received message, and then incremented by

one.

 If Ci is the local clock for process Pi then,

 if a and b are two successive events in Pi, then Ci(b) = Ci(a) + d1, where d1 > 0

 if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)

 if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

Rules of Lamport’s clock

Rule 1: Ci(b) = Ci(a) + d1, where d1 > 0

Rule 2: The following actions are implemented when pi receives a message m with timestamp Cm:

a) Ci= max(Ci, Cm)

b) Execute Rule 1

c) deliver the message

Fig : Evolution of scalar time

Basic properties of scalar time:

1. Consistency property: Scalar clock always satisfies monotonicity. A monotonic clock

only increments its timestamp and never jump.Hence it is consistent.

2. Total Reordering:Scalar clocks order the events in distributed systems.But all the events

do not follow a common identical timestamp. Hence a tie breaking mechanism is essential to

order the events. The tie breaking is done through:

 Linearly order process identifiers.

 Process with low identifier value will be given higher priority.

The term (t, i) indicates timestamp of an event, where t is its time of occurrence and i is the

identity of the process where it occurred.

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

The total order relation () over two events x and y with timestamp (h, i) and (k, j) is given by:

A total order is generally used to ensure liveness properties in distributed algorithms.

3. Event Counting

 If event e has a timestamp h, then h−1 represents the minimum logical duration,

counted in units of events, required before producing the event e. This is called height of the

event e. h-1 events have been produced sequentially before the event e regardless of the

processes that produced these events.

4. No strong consistency

 The scalar clocks are not strongly consistent is that the logical local clock and logical

global clock of a process are squashed into one, resulting in the loss causal dependency

information among events at different processes.

VECTOR TIME

 The ordering from Lamport's clocks is not enough to guarantee that if two events

precede one another in the ordering relation they are also causally related. Vector Clocks use

a vector counter instead of an integer counter. The vector clock of a system with N processes

is a vector of N counters, one counter per process. Vector counters have to follow the

following update rules:

 Initially, all counters are zero.

 Each time a process experiences an event, it increments its own counter in the vector

by one.

 Each time a process sends a message, it includes a copy of its own (incremented)

vector in the message.

 Each time a process receives a message, it increments its own counter in the vector by

one and updates each element in its vector by taking the maximum of the value in its

own vector counter and the value in the vector in the received message.

The time domain is represented by a set of n-dimensional non-negative integer vectors in vector

time.

Rules of Vector Time

Rule 1: Before executing an event, process pi updates its local logical time

as follows:

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Rule 2: Each message m is piggybacked with the vector clock vt of the sender

process at sending time. On the receipt of such a message (m,vt), process

pi executes the following sequence of actions:

1. update its global logical time

2. execute R1

3. deliver the message m

Fig : Evolution of vector scale

Basic properties of vector time

1. Isomorphism:

 “→” induces a partial order on the set of events that are produced by a distributed

execution.

 If events x and y are timestamped as vh and vk then,

 There is an isomorphism between the set of partially ordered events produced by a

distributed computation and their vector timestamps.

 If the process at which an event occurred is known, the test to compare two

timestamps can be simplified as:

2. Strong consistency

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of two events, we can determine if the events are causally related.

3. Event counting

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

If an event e has timestamp vh, vh[j] denotes the number of events executed by process p j

that causally precede e.

Vector clock ordering relation

t[i]- timestamp of process i.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

1.18 PHYSICAL CLOCK SYNCHRONIZATION: NEWTWORK TIME PROTOCOL (NTP)
Centralized systems do not need clock synchronization, as they work under a common clock. But the

distributed systems do not follow common clock: each system functions based on its own internal clock and its own
notion of time.The time in distributed systems is measured in the following contexts:

 The time of the day at which an event happened on a specific machine in the network.
 The time interval between two events that happened on different machines in the network.

 The relative ordering of events that happened on different machines in the network.

Clock synchronization is the process of ensuring that physically distributed processors have a
common notion of time.

Due to different clocks rates, the clocks at various sites may diverge with time, and periodically a clock
synchrinization must be performed to correct this clock skew in distributed systems. Clocks are synchronized to an
accurate real-time standard like UTC (Universal Coordinated Time). Clocks that must not only be synchronized with
each other but also have to adhere to physical time are termed physical clocks. This degree of synchronization
additionally enables to coordinate and schedule actions between multiple computers connected to a common network.

1.18.1 Basic terminologies:
If Ca and Cb are two different clocks, then:

 Time: The time of a clock in a machine p is given by the function Cp(t),where Cp(t)= t for a perfect
clock.

 Frequency: Frequency is the rate at which a clock progresses. The frequency at time t of clock
CaisCa

’(t).

 Offset: Clock offset is the difference between the time reported by a clock and the real time. The
offset of the clock Ca is given by Ca(t)− t. The offset of clock C a relative to Cb at time t ≥ 0 is given
by Ca(t)- Cb(t)

 Skew: The skew of a clock is the difference in the frequencies of the clock and the perfect clock.
The skew of a clock Ca relative to clock Cb at timet is Ca

’(t)- Cb
’(t).

 Drift (rate): The drift of clock Ca the second derivative of the clock value with respect to time. The
drift is calculated as:

1.18.2 Clocking Inaccuracies
Physical clocks are synchronized to an accurate real-time standard like UTC (Universal Coordinated Time).

Due to the clock inaccuracy discussed above, a timer (clock) is said to be working within its specification if:

- maximum skew rate.

1. Offset delay estimation
A time service for the Internet - synchronizes clients to UTC Reliability from redundant paths, scalable,

authenticates time sources Architecture. The design of NTP involves a hierarchical tree of time servers with primary
serverat the root synchronizes with the UTC. The next level contains secondary servers, which act as a backup to the
primary server. At the lowest level is the synchronization subnet which has the clients.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

2. Clock offset and delay estimation
A source node cannot accurately estimate the local time on the target node due to varying message or network delays
between the nodes.This protocol employs a very common practice of performing several trials and chooses the trial
with the minimum delay.

Fig 1.24: Behavior of clocks

Fig 1.30 a) Offset and delay estimation
between processes from same server

Fig 1.30 b) Offset and delay estimation
between processes from different servers

Let T1, T2, T3, T4 be the values of the four most recent timestamps. The clocks A and B are stable and running at the
same speed. Let a = T1 − T3 and b = T2 − T4. If the network delay difference from A to B and from B to A, called
differential delay, is
small, the clock offset and roundtrip delay of B relative to A at time T4are approximately given by the following:

Each NTP message includes the latest three timestamps T1, T2, andT3, while T4 is determined upon arrival.

