2.3 LATIN SQUARE:

Steps in constructing Latin Square

Step:1

Square the Grand total (T) and divide it by the number of observations (N).

i.e), Find $\frac{T^2}{N}$ which is called the correction factor (C.F)

Step:2

Add the squares of the individual observations (X_i 's) and substract the C.F from it to get the total sum of squares. i.e)., Find Total sum of squares TSS

i.e)., TSS =
$$\sum_{i} (X_i)^2 - \frac{T^2}{N}$$

Step:3

Add the squares of the row sums (R_i) divide it by the number of items in a row and substract the C.F from the result to get the row sum of squares.

Row sum of squares
$$SSR = \frac{(\sum R_i)^2}{n_1} - C.F$$

Where n_1 is the number of items in a row.

Step:4

Add the squares of the columns sums (C_i) divide it by the number of items and substract the C.F from the result to get the column sum of squares.

Column sum of squares $SSC = \frac{(\sum C_j)^2}{n_2} - C.F$

Where n_2 is the number of items in a column.

Step:5

Sum of the squares of the treatment sums (T_i) divide it by the number of treatments and substract the C.F from it to get the treatment sum of squares, i.e., Treatment sum of squares.

$$SST = \frac{(\sum T_i)^2}{n_i} - C.F$$

Where n_i is the number of treatments.

Step:6

Substract the sum obtained in steps 3, 4, and 5 from 2 we get residual.

i.e)., Residual
$$SSE = TSS - (SSR + SSC + SST)$$

Step:7

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of	Sum of	Degrees of	Mean Square	F - Ratio
variation	Degrees	Freedom		
Between Rows	SSR	n-1 ENGINE	$MSR = \frac{SSR}{n-1}$	$F_{R} = \frac{MSR}{MSE} \text{ if MSR} >$ MSE $F_{R} = \frac{MSE}{MSR} \text{ if MSE} >$ MSR
Between Columns	SSC	n - 1	$MSC = \frac{SSC}{n-1}$	$F_{c} = \frac{MSC}{MSE} \text{ if MSC>}$ MSE $F_{c} = \frac{MSE}{MSC} \text{ if MSE>}$ MSC
Treatments	SST	n - 1	$MST = \frac{SST}{n-1}$	$F_T = \frac{MST}{MSE} \text{ if MST>}$ MSE $F_T = \frac{MSE}{MST} \text{ if MSE>}$ MST
Residual or Error	SSE	(n-1)(n-2)	$\frac{MSE = \frac{SSE}{(n-1)(n-2)}}$	

Step:8

Compute the F-ratio and find out whether the differences are significant or not according to the given level of significance.

1. Set up the analysis of variance for the following results of a Latin square design.

Α	С	В	D
12	19	10	8
С	В	D	Α
18	12	6	7
В	D	Α	С
22	10	5	21
С	Α	С	В
12	7	27	17

Solution:

Set the null hypothesis H_0 : There is no significance difference between the rows, columns and treatments.

	С1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	Row	$\frac{R_i^2}{4}$
					Total	<i>'</i> 4
					R _i	
R_1	12	19	10	8	49	600.25
R_2	18	12	6	7	43	462.25
R_3	22	10	5	21	58	841
R_4	12	7	27	17	63	992.25
Column	64	48	48	53	213 (T)	2895.75
Total		14				$\sum R_i^2/$
C_j		7,9%				$\angle 4$
$C_j^2/$	1024	576	576	702.25	2895.75	
/4					$\sum C_i^2/$	N O V
		0	120		$\sum_{1}^{7}/4$	ÌÌ

Table I (To find TSS, SSR and SSC)

Table II (To find SST)

	1	2	3	4	Row Total T_i	$T_i^2/4$
Α	12	7	5	7	31	240.25
В	10	12	22	17	61	930.25
С	19	18	21	27	85	1806.25
D	8	6	10	12	36	324
			OBSE	RVEOP	TIMIZE OU	$\frac{3300.75}{\sum_{i}^{T_{i}^{2}}/4}$

Step:1

Grand total (T) =213

Step:2

Correction factor (C.F)= $\frac{T^2}{N} = \frac{(213)^2}{16} = 2835.56$

Step:3

Sum of squares of individual observations

$$= (12)^{2} + (7)^{2} + (5)^{2} + (7)^{2} + (10)^{2} + (12)^{2} + (22)^{2} + (17)^{2} + (19)^{2} + (18)^{2} + (21)^{2} + (27)^{2} + (8)^{2} + (6)^{2} + (10)^{2} + (12)^{2}$$

= 3483

Step:4

TSS =sum of squares of individual observations - C.F

$$=\sum_{i} (X_i)^2 - \frac{T^2}{N} = 3486 - 2835.56 = 647.44$$

Step:5

Row sum of squares $SSR = \frac{(\sum R_i)^2}{4} - C.F = 2895.75 - 2835.56 = 60.19$

Step:6

Column sum of squares $SSC = \frac{(\Sigma c_j)^2}{4} - C.F = 2878.25 - 2835.56$

$$= 42.69$$

Step:7

Sum of squares of Treatment

$$SST = \frac{(\sum T_i)^2}{n_i} - C.F = 3300.75 - 2835.56 = 465.19$$

Step:8

Residual
$$SSE = TSS - (SSR + SSC + SST)$$

= 647.44 - (60.19 + 42.69 + 465.19) = 79.37

Step:9

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of	Sum of	Degrees of	Mean Square	F - Ratio
variation	Degrees	Freedom		

ROHINI COLLEGE OF BENGINEERING AND TECHNOLOGY

Between	SSR=60.19	4 – 1 =3	$MSR = \frac{SSR}{n-1}$	$F_R = \frac{MSR}{MSE} = 1.52$
Rows			=20.06	MSL
Between	SSC=42.69	4 - 1 = 3	$MSC = \frac{SSC}{n-1}$	$F_c = \frac{MSC}{MSE} = 1.08$
Columns			$=14.23$ $^{n-1}$	MSE
Treatments	SST=465.19	4 - 1 = 3	$MST = \frac{SST}{n-1}$	$F_T = \frac{MST}{MSE} = 11.73$
			$=155.06^{n-1}$	MSL
Residual or	SSE=79.37	(4-1)(4-2)	MSE =	
Error		=6	SSE	
			(n-1)(n-2)	
			=13.22	

Step: 10

d.f for (3, 6) at 5% level of significance is 4.76

Step: 11 Conclusion:

Calculated value F_c < Table value, then we accept null hypothesis.

There is no significance difference between the columns.

Calculated value F_R <Table value, then we accept null hypothesis.

There is no significance difference between the rows.

Calculated value F_T >Table value, then we reject null hypothesis.

There is a significance difference between the rows.

