
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Oracle

SQL

server


JDBC API provides industry-standard and database-independent connectivity

between java applications and database servers.

JDBC CONNECTIVITY

JDBC provides framework to connect to relational databases from java programs.

The JDBC library includes APIs for each of the tasks commonly associated with

database usage:

o Making a connection to a database

o Creating SQL or MySQL statements

o Executing that SQL or MySQL queries in the database

o Viewing & Modifying the resulting records

JDBC can be used with Java Applications, Java Applets, Java Servlets, Java ServerPages

(JSPs) and Enterprise JavaBeans (EJBs)

JDBC Architecture

JDBC Architecture consists of two layers:

 JDBC API: This provides the application-to-JDBC Managerconnection.

 JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

 Java application

 JDBC API

 JDBC driver

manager

JDBC driver JDBC driver JDBC driver

Figure 3.18 JDBC Architecture

ODBC

data

source

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

The JDBC API supports both two-tier and three-tier processing models for database

access.The JDBC API uses a driver manager and database-specific drivers to provide

connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data

source. The driver manager is capable of supporting multiple concurrent drivers connected to

multiple heterogeneous databases.

Components of JDBC

The following are some of the important components of JDBC:

DriverManager:

This class manages a list of database drivers. It is responsible for matching the

connection requests from the java application with the proper database driver using

communication sub protocol.

Driver:

This interface handles the communications with the database server.The

DriverManager manages these objects.

Connection:

This interface with all methods for contacting a database. The connection object

represents communication context, i.e., all communication with database is through

connection object only.

Statement:

The objects created from this interface are used to submit the SQL statements to the

database.

ResultSet:

These objects hold data retrieved from a database after executing an SQL query using

Statement objects. It acts as an iterator that moves through its data.

SQLException:

This class handles any errors that occur in a database application.

JDBC Driver

JDBC drivers implement the defined interfaces in the JDBC API for interacting with

the database server.The JDBC drivers open database connections and interact with it by

sending SQL or database commands then receiving results with Java.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

JDBC API

Partial java

JDBC driver

Pure java

JDBC driver

Pure java

JDBC driver

DB client lib DB client lib

DB middleware

server

ODBC API

JDBC ODBC

bridge driver

JDBC driver manager

Figure 3.19 JDBC Drivers

1. JDBC-ODBCBridge plus ODBC Driver (Type 1):

This driver uses ODBC driver to connect to database servers. The ODBC drivers must be

installed in the machines from where the connection is established to JDBC drivers.This

driver is almost obsolete and should be used only when other options are not available.

2. Native API partly Java technology-enabled driver (Type 2):

This type of driver converts JDBC class to the client API for the RDBMS servers.The

database client API should be installed at the machine from which we want to make

database connection. Because of extra dependency on database client API drivers, this is

also not preferred driver.

3. Pure Java Driver for Database Middleware (Type 3):

This type of driver sends the JDBC calls to a middleware server that can connect to

different type of databases. A middleware server must be installed to work with this kind

of driver. This adds to extra network calls and slow performance. Hence this is also not

widely used JDBC driver.

4. Direct-to-Database Pure Java Driver (Type 4):

This is the preferred driver because it converts the JDBC calls to the network protocol

understood by the database server. This solution doesn’t require any extra APIs at the client

side and suitable for database connectivity over the network. However for this solution, we

should use database specific drivers, for example OJDBC jars provided by Oracle for

Oracle DB and MySQL Connector/J for MySQL databases.

Database server

Java applicaiton

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Database

Vendor-specific

ODBC driver

Java applicaiton

JDBC driver manager

Creating a JDBC application

There are following six steps involved in building a JDBC application:

1. Import the packages - Include the packages containing the JDBC classes

needed for database programming.

2. Register the JDBC driver - Initialize a driver so to open a communications

channel with the database.

3. Open a connection - Using DriverManager.getConnection() method create

a Connection object, which represents a physical connection with the

database.

4. Execute a query - Statement for building and submitting an SQL statement

to the database.

5. Extract data from result set - Use ResultSet.getXXX() method to retrieve

the data from the result set.

6. Clean up the environment - Explicitly closes all database resources.

Connections using JDBC

The JDBC connections can be established in two ways:

 By using JDBC-ODBC bridge

 By using vendor specific JDBC driver

JDBC API

JDBC driver API

JDBC ODBC

bridge driver

Vendor-specific

ODBC driver

Database

Figure 3.20 JDBC drivers

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Define the Connection URL

URLs referring to databases use the jdbc: protocol and embed the server host, port,

and database name (or reference) within the URL.

Establish the Connection

To make the actual network connection, pass the URL, database username, and

database password to the getConnection method of the DriverManager class.The

getConnection throws an SQLException.

Connection connection = DriverManager.getConnection(oracleURL, username, password);

RDBMS JDBC driver name URL format

MySQL com.mysql.jdbc.Driver
jdbc:mysql://hostname/

databaseName

ORACLE oracle.jdbc.driver.OracleDriver
jdbc:oracle:thin:@hostname:port

Number:databaseName

DB2 COM.ibm.db2.jdbc.net.DB2Driver
jdbc:db2:hostname:port

Number/databaseName

Sybase com.sybase.jdbc.SybDriver
jdbc:sybase:Tds:hostname: port

Number/databaseName

Methods of connection class:

1. prepareStatement- Creates precompiled queries for submission to the database.

2. prepareCall- Accesses stored procedures in the database.

3. rollback/commit- Controls transaction management.

4. close- Terminates the open connection.

5. isClosed- Determines whether the connection timed out or was explicitly

closed.

JDBC - Statements, PreparedStatement and CallableStatement

Once a connection is obtained we can interact with the database. The JDBC Statement,

CallableStatement, and PreparedStatement interfaces define the methods and properties that

enable to send SQL or PL/SQL commands and receive data from the database. They also

define methods that help bridge data type differences between Java and SQL data types used

in a database

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Interfaces Recommended Use

Statement

Use for general-purpose access to thedatabase. Useful when

using static SQL statements at runtime. The Statement interface

cannot accept parameters.

PreparedStatement

Used when the SQL statements are to be executed many times.

The PreparedStatement interface accepts input parameters at

runtime.

CallableStatement

Use when database stored procedures are to be executed. The

CallableStatement interface can also accept runtime input

parameters.

Create a Statement Object

A Statement object is used to send queries and commands to the database.It is created

from the Connection using createStatement.

Statement statement = connection.createStatement();

Most, but not all, database drivers permit multiple concurrent Statement objects to be

open on the same connection.

Execute a Query or Update

The Statement object can be uses to send SQL queries by using the executeQuery

method, which returns an object of type ResultSet.

Example:String query = "SELECT col1, col2, col3 FROM sometable";

ResultSet resultSet = statement.executeQuery(query);

The methods in the Statement class are:

Methods Description

executeQuery Executes an SQL query and returns the data in a

ResultSet. The ResultSet may be empty, but never null.

executeUpdate Used for UPDATE, INSERT, or DELETE commands.

Returns the number of rows affected, which could be

zero. Also provides support for Data Definition Language

(DDL) commands, for example, CREATE TABLE,

DROP TABLE, and ALTERTABLE.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

executeBatch Executes a group of commands as a unit, returning an

array with the update counts for each command. Use

addBatch to add a command to the batch group.

setQueryTimeout Specifies the amount of time a driver waits for the result

before throwing a SQLException.

getMaxRows/setMaxRows Determines the number of rows a ResultSet may contain.

Excess rows are silently dropped. The default is zero for

no limit.

Process theResults

The simplest way to handle the results is to use the next method of ResultSet to move

through the table a row at a time. Within a row, ResultSet provides various getXxx methods

that take a column name or column index as an argument and return the result in a variety of

different Java types. For instance, use getInt if the value should be an integer, getString for a

String, and so on for most other data types. To just display the results, use getString for most

of the column types.

while(resultSet.next())

{System.out.println(resultSet.getString(1) + " " + resultSet.getString(2) + " " +

resultSet.getString("firstname") + " " resultSet.getString("lastname"));}

Methods Description

next/previous Moves the cursor to the next (any JDBC version) or previous

(JDBC version 2.0 or later) row in the ResultSet, respectively.

relative/absolute The relative method moves the cursor a relative number of rows,

either positive (up) or negative (down). The absolute method

moves the cursor to the given row number. If the absolute value

is negative, the cursor is positioned relative to the end of the

ResultSet (JDBC 2.0).

getXxx Returns the value from the column specified by the column

name or column index as an Xxx Java type (see java.sql.Types).

Can return 0 or null if the value is an SQL NULL.

wasNull Checks whether the last getXxx read was an SQL NULL.

findColumn Returns the index in the ResultSet corresponding to the specified

column name.

getRow Returns the current row number, with the first row starting at 1

(JDBC 2.0).

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

import java.io.IOException;import java.io.PrintWriter;import java.sql.Connection;

import java.sql.DriverManager;import java.sql.ResultSet;import java.sql.SQLException;

import java.sql.Statement;import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class JDBCServlet extends HttpServlet

{ public void doGet(HttpServletRequest inRequest, HttpServletResponse outResponse)

throws ServletException, IOException

{ PrintWriter out = null;

Connection connection = null;

Statement statement;

ResultSet rs;

getMetaData Returns a ResultSetMetaData object describing the ResultSet.

ResultSetMetaData Gives the number of columns and the column names.

Close the Connection

To close the connection explicitly close() is used.

connection.close();

Closing the connection also closes the corresponding Statement and ResultSet objects.

The PreparedStatement Objects

The PreparedStatement interface extends the Statement interface which gives added

functionality with a couple of advantages over a generic Statement object. This statement

gives the flexibility of supplying arguments dynamically.

Example:

PreparedStatement pstmt = null;

Try{ String SQL = "Update Employees SET age = ? WHERE id = ?";

pstmt = conn.prepareStatement(SQL);}

The CallableStatement Objects

A Connection object creates the CallableStatement object which would be used to

execute a call to a database stored procedure.

Simple JDBC connection in a servlet

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

try {

Class.forName("com.mysql.jdbc.Driver");

connection =

DriverManager.getConnection("jdbc:mysql://localhost/products");

statement = connection.createStatement();

outResponse.setContentType("test/html");

out = outResponse.getWriter();

rs = statement.executeQuery("SELECT ID, title, price FROM product");

out.println("<HTML><HEAD><TITLE>Products</TITLE></HEAD>");

out.println("<BODY>");

out.println("");

while (rs.next()) {

out.println("" + rs.getString("ID") + " " + rs.getString("title")

+ " " + rs.getString("price"));

}

out.println("");

out.println("</BODY></HTML>"); }

catch (ClassNotFoundException e)

{ out.println("Driver Error"); }

catch (SQLException e)

{ out.println("SQLException: " + e.getMessage()); } }

public void doPost(HttpServletRequest inRequest, HttpServletResponse outResponse)

throws ServletException, IOException

{ doGet(inRequest, outResponse); }}

ID Title Price

56 Soap 40

98 Shampoo 15

Batch Processing

Batch Processing allows grouping related SQL statements into a batch and submitting

them with one call to the database. When several SQL statements are sent to the database at

once, they can be clubbed together to reduce the amount of communication overhead. This is

called batch processing. The following methods are used in batch processing:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

S.No Method Description

1. DatabaseMetaData.

supportsBatchUpdates()

This method determines if the target database supports

batch update processing.

2. addBatch() This method is used to add individual statements to the

batch.

3. executeBatch() This method is used to start the execution of all the

statements grouped together.

4. clearBatch() This method removes all the statements added with the

addBatch() method. The statements cannot be

selectively chosen.

The following code provides an example of a batch update using Statement object:

Statement stmt = conn.createStatement();

conn.setAutoCommit(false); // Set auto-commit to false

String SQL = "INSERT INTO Employees (id, first, last, age) " +

"VALUES(200,'Zia', 'Ali', 30)";

stmt.addBatch(SQL); // Add above SQL statement in the batch.

String SQL = "INSERT INTO Employees (id, first, last, age) " +

"VALUES(201,'Raj', 'Kumar', 35)"; // Create one more SQL statement

stmt.addBatch(SQL); // Add above SQL statement in the batch.

String SQL = "UPDATE Employees SET age = 35 " + "WHERE id = 100";

stmt.addBatch(SQL);

int[] count = stmt.executeBatch();// Create an int[] to hold returned values

conn.commit();//Explicitly commit statements to apply changes

