UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5. ASYMPTOTIC NOTATIONS AND ITS PROPERTIES

Asymptotic notation is a notation, which is used to take meaningful statement
about the efficiency of a program.

The efficiency analysis framework concentrates on the order of growth of an
algorithm’s basic operation count as the principal indicator of the algorithm’s
efficiency.

To compare and rank such orders of growth, computer scientists use three
notations, they are:

e O - Big oh notation

e Q- Big omega notation

e O - Big theta notation
Lett(n)andg(n)canbeanynonnegativefunctionsdefinedonthesetofnaturalnumbers.

The algorithm’s running time t(n) usually indicated by its basic operation count
C(n), and g(n), some simple function to compare with the count.

Example 1:

— 2 l 2
ne O(nz). 100n +5€ O(n°), ;n(n —1)e O(n°).
n> =3 0(112). 0.000012° é 0(112). n*+n +1¢ O(nz).
n’ e Qn?), _)ln(n —HeQ@md), but 100n + 5 & Q(n?).

where g(n) = n2.
(1) O - Big oh notation

A function t(n) is said to be in O(g(n)), denoted (n) € (g(n)), if t (n) is bounded aowe
by some constant multiple of g(n) for all large n, i.e., if there exist some positive
constant ¢ and some nonnegative integer no such that

(n) < g(n) for n <ny.
Where t(n) and g(n) are nonnegative functions defined on the set of natural
numbers.

O = Asymptotic upper bound = Useful for worst case analysis = Loose bound
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FIGURE 1.5 Big-oh notation: (n) € (g(n)).

Example2: Prove the assertions 100n+ 3 € (n?).
Proof: 100n+ 5 < 100n +n (foralln=3)
=101n

=101n (3 n=n?
Since, the definition gives us a lot of freedom in choosing specific values for constants ¢
and ng. We have c=101 and ng=>5
Exampled: Prove the assertions 100n + 35 €(n).
Proof: 100s + 5= 100n + Sn (for all n =1)

=103n
te. 100n+35=105n
Le., t(n) =cg(n)

Bla € (1) with ¢=105 andng=1

(i) Q - Big omega notation

A function t(n) is said to be in Q(g(n)), denoted t(n) € Q(g(n)), if t(n) is
bounded below by some positive constant multiple of g(n) for all large n, i.e., if
there exist some positive constant ¢ and some nonnegative integer no such that

t (n) > cg(n) for all n > no.
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers.
Q = Asymptotic lower bound = Useful for best case analysis = Loose bound
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FIGURE 1.6 Big-omega notation: t (n) €  (g(n)).

Example4: Prove the assertions n®+10n%+4n+2 € Q(n?).

Proof: n®+10n?+4n+2 > n? (for all n > 0)
I.e., by definition t(n) > cg(n), where c=1 and n¢=0

(ii) O - Big theta notation

A function t(n) is said to be in ®(g(n)), denoted t(n) €B(g(n)), if t(n) is
bounded both above and below by some positive constant multiples of g(n) for all
large n, i.e., if there exist some positive constants ¢; and c; and some nonnegative
integer ng such that

C2g(n) <t (n) < cig(n) for all n > ny.
Where t(n) and g(n) are non-negative functions defined on the set of natural
numbers.
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® = Asymptotic tight bound = Useful for average case analysis
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FIGURE 1.7 Big-theta notation: t (n) € ®(g(n)).

Example3:  Prove the assertions %_n (n—1) €B(n?).

Proof: First prove the night inequality (the upperbound):
In(n—1='n’—'n='n*foralln=0.
2 2 2

[

Second, we prove the left inequality (the lower bound):
nln—-D=lnl-ln=ln?—[ln]['a] foralln=2.

h-_'!ll—l

8 hin-=n*  _
2 4
- 1 9 1
ie, In=ln(n—)]kln?
4 .
Hence. 1 — Lisienn)
- . Where ¢/="__ cl="_ andni=.

Note: asymptotic notation can be thought of as "relational operators” for functions similar to the
corresponding relational operators for values.

==0(). ==00) ==0). <=0(). >0
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Useful Property Involving the Asymptotic Notations

The following property, in particular, 1s useful in analyzing algorithms that comprise two
consecutively executed parts.

THEOREM: If ti(n) € O(g1(n)) and t2(n) € O(g2(n)). then t1(n) + t2(n) € Olmax{gi1(n). g2(n)}).
(The analogous assertions are true for the £ and @ notations as well.)

PROOF: The proof extends to orders of growth the following simple fact about four arbitrary real
numbers al, bi, a2, b2: if a1 = b1 and a2 = by, then a1 + a2 = 2 max {b1, ba}.
Since t1(n) € O(g1(n)), there exist sotne positive constant ) and some nonnegative integer
n1 suchthat
t1(n) = c1gi(n) for all n = n1.
Similarly, since t2(n) € O(ga(n)),
t2(n) = c2g2(n) foralln = na.
Let us denote c3 = max {c1, c2} and consider n = max {n1, n2} so that we can
use both inequalities. Adding them vields the following:
ti(n)+t2(n) = cigl{n) +cagz(n)
= c3gl(n) +cigan)
= c3[gi(n) +g2(n)]

= ¢32 max{gi(n), gz(n)}.

Hence, ti(n) + t2(n) € O(max{g1(n), gz(n)}). with the constants ¢ and ns required by the
definition QQ being 2c3 =2 max {c1. c2} and max {n1, n1}. respectively.

The property implies that the algorithm’s overall efficiency will be determined by the part
with a higher order of growth, 1.e_, its least efficient part.

Bifn) O(g1(n)) and t2(n) € O{g2(n)). then t1(n) + t2(n) € Olmax{g1(n). g2(n)}).

Basic rules of sum manipulation

[ H

Z:'ﬁ,::'Zu,. (1)
=i i =i
i i

(a; &= b;) = a; 4= ; b;, (R2)
S s =Fasy

i=l i=f

Summation formulas

u
Z l=u—1+4+1 whefe! < u are some lower and upper integer limits, (S1)
i=l

n

n
Z(;i:;i=1+2+---+;1:w%ln:e(ﬂ(nz). (S2)
= —

S
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