
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

Event Handling

Any change in the state of any object is called event. For Example: Pressing a button,

en- tering a character in Textbox, Clicking or dragging a mouse, etc. The three main

components in event handling are:

• Events: An event is a change in state of an object. For example, mouseClicked,

mousePressed.

• Events Source: Event source is an object that generates an event. Example: a button,

frame, textfield.

• Listeners: A listener is an object that listens to the event. A listener gets notified when

an event occurs. When listener receives an event, it process it and then return. Listeners

are group of interfaces and are defined in java.awt.event package. Each component

has its own listener. For example MouseListener handles all MouseEvent.

Some of the event classes and Listener interfaces are listed below.

Event Classes Generated when Listener Interfaces

ActionEvent button is pressed, menu-item is selected,

list-item is double clicked

Action Listener

MouseEvent mouse is dragged, moved, clicked, pressed

or released and also when it enters or exit

a component

Mouse Listener and

Mouse Motion

Listener

MouseWheelEvent mouse wheel is moved Mouse Wheel Listener

KeyEvent input is received from keyboard Key Listener

ItemEvent check-box or list item is clicked Item Listener

TextEvent value of textarea or textfield is changed Text Listener

AdjustmentEvent scroll bar is manipulated Adjustment Listener

WindowEvent window is activated, deactivated, deico-

nified, iconified, opened or closed

Window Listener

ComponentEvent component is hidden, moved, resized or

set visible

Component Listener

ContainerEvent component is added or removed from

container

Container Listener

FocusEvent component

focus

gains or losses keyboard Focus Listener

Java program for handling keyboard events.

Test.java

import

java.awt.event.*;

import java.applet.*;

import java.applet.*;

import

java.awt.event.*;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

import java.awt.*;

//Implementing KeyListener interface to handle keyboard

events public class Test extends Applet implements

KeyListener

{

String msg=””;

public void

init()

{

addKeyListener(this); //use keyListener to monitor key events

}

public void keyPressed(KeyEvent k) // invoked when any key is pressed down

{

showStatus(“KeyPressed”);

}

public void keyReleased(KeyEvent k) // invoked when key is released

{

showStatus(“KeyRealesed”);

}

//keyTyped event is called first followed by key pressed or key released event

public void keyTyped(KeyEvent k) //invoked when a textual key is pressed

{

msg = msg+k.getKeyChar(); repaint();

}

public void paint(Graphics g)

{

g.drawString(msg, 20, 40);

}

}

Test1.html

<html>

<body>

<applet code=”Test.class” width=”400” height=”300”>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

</applet>

</body>

</html>

Adapter Classes

An adapter class provides the default implementation of all methods in an event

listener interface. Adapter classes are very useful when you want to process only few of

the events that are handled by a particular event listener interface. For example

MouseAdapter provides empty implementation of MouseListener interface. It is useful

because very often you do not really use all methods declared by interface, so implementing

the interface directly is very lengthy.

• Adapter class is a simple java class that implements an interface with only EMPTY

implementation.

• Instead of implementing interface if we extends Adapter class ,we provide

implementation only for require method

The adapter classes are found in java.awt.event, java.awt.dnd and javax.swing.

event packages. The Adapter classes with their corresponding listener interfaces are as fol-

lows.

Adapter Class Listener Interface

Window Adapter Window Listener

Key Adapter Key Listener

Mouse Adapter Mouse Listener

Mouse Motion Adapter Mouse Motion Listener

Focus Adapter Focus Listener

Component Adapter Component Listener

Container Adapter Container Listener

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

HierarchyBoundsAdapter HierarchyBoundsListener

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

Example:

import java.awt.*;

import

java.awt.event.*;

public class

AdapterExample{ Frame f;

AdapterExample(){

f=new Frame(“Window Adapter”);

f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

f.dispose();

}

});

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String[] args)

{ new AdapterExample();

}

}

Sample Output:

Actions

The Java Action interface and AbstractAction class are terrific ways of

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

encapsulating be- haviors (logic), especially when an action can be triggered from

more than one place in your Java/Swing application.

javax.swing

Interface Action

An Action can be used to separate functionality and state from a component. For example,

if you have two or more components that perform the same function, consider using an Ac-

tion object to implement the function.

An Action object is an action listener that provides not only action-event handling, but

also centralized handling of the state of action-event-firing components such as tool bar but-

tons, menu items, common buttons, and text fields. The state that an action can handle in-

cludes text, icon, mnemonic, enabled, and selected status.

The most common way an action event can be triggered from multiple places in a Java/

Swing application is through the Java menubar (JMenuBar) and toolbar (JToolBar)

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

public class ButtonAction {

private static void createAndShowGUI() {

JFrame frame1 = new JFrame(“JAVA Program”);

frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton button = new JButton(“ << Java Action >>”);

//Add action listener to button

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

System.out.println(“You clicked the button”);

}

});

frame1.getContentPane().add(button);

frame1.pack();

frame1.setVisible(true);

}

public static void main(String[] args) {

javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {

createAndShowGUI();

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

}

}

});

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

