- **1. LEO:** Low Earth Orbit satellites have a small area of coverage. They are positioned in an orbit approximately 3000km from the surface of the earth
 - They complete one orbit every 90 minutes
 - The large majority of satellites are in low earth orbit
 - The Iridium system utilizes LEO satellites (780km high)

The satellite in LEO orbit is visible to a point on the earth for a very short time

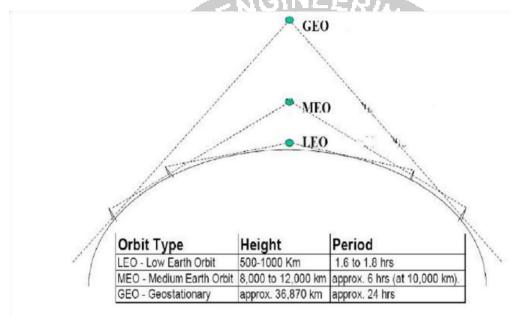


Figure LEO, MEO & GEO range

MEO: *Medium Earth Orbit* satellites have orbital altitudes between 3,000 and 30,000 km.

■ They are commonly used used in navigation systems such as GPS

GEO: Geosynchronous (Geostationary) Earth Orbit satellites are positioned over the equator. The orbital altitude is around 30,000-40,000 km

- There is only one geostationary orbit possible around the earth
- Lying on the earth's equatorial plane.
- The satellite orbiting at the same speed as the rotational speed of the earth on its axis.

- They complete one orbit every 24 hours. This causes the satellite to appear stationary with respect to a point on the earth, allowing one satellite to provide continual coverage to a given area on the earth's surface
- One GEO satellite can cover approximately 1/3 of the world's surface

They are commonly used in communication systems

Advantages:

- Simple ground station tracking.
- Nearly constant range
 Very small frequency shift
 Disadvantages:
- Transmission delay of the order of 250 msec. Large free space loss.
 - No polar coverage
- Satellite orbits in terms of the orbital height:
- According to distance from earth:
 - Geosynchronous Earth Orbit (GEO),
 - Medium Earth Orbit (MEO),
 - Low Earth Orbit (LEO)

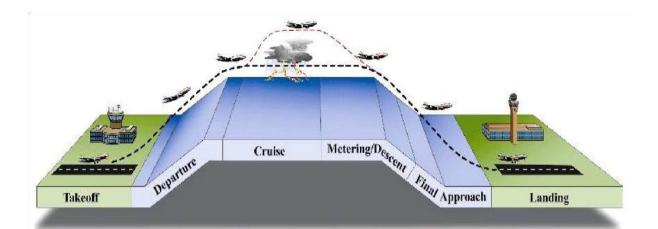
Figure LEO, MEO & GEO Orbits

LEO / MEO / GEO / HEO (cont.)

LEO	Name	Number	Panel	No./Panel	altitude	deg
	STARSYS	24	б	4	1300km	60
	ORBCOMM	24	<u>6</u> 4	$\frac{4}{6}$	785km	45
	GLOBALSTAR	48	8	6	1400km	52
	<u>IRIDIUM</u>	<u>66</u>	<u>6</u>	<u>11</u>	<u>765km</u>	<u>86</u>
MEO	Name	Number	Panel	No./Panel	altitude	deg.
	INMARSAT P	10	2	5	10300km	45
	ODYSEEY	12	$\frac{3}{6}$	4	10370km	55
	GPS	24	6	<u>4</u> 4	20200km	55
	GLONASS	<u>24</u>	<u>3</u>	8	19132km	64.8
нео	Name	Number	Panel	No./Panel	altitude	deg
	FLLIPSO	24	4	б	A:7800km	
					P:520km	63.4
	MOLNIYA	4	1	4	A:39863km	
					P:504km	63.4
	ARCHIMEDES	4	4	1	A:39447km	
	-				P:926km	63.4

Figure Diff b/w LEO, MEO & GEO Orbits GEO: 35,786 km above the earth, MEO: 8,000-20,000 km above the earth & LEO: 5002,000 km above the earth.

Satellite Navigational System:


Benefits:

- Enhanced Safety
- Increased Capacity
- Reduced Delays VE OPTIMIZE OUTSPREAD

Advantage:

- Increased Flight Efficiencies
- Increased Schedule Predictability
- Environmentally Beneficial Procedures

9

Figure LEO, MEO & GEO Orbits

- Using ICAO GNSS Implementation Strategy and ICAO Standards and Recommended Practices
 - GPS Aviation Use Approved for Over a Decade
 - Aircraft Based Augmentation Systems (ABAS) (e.g. RAIM)
 - Space Based Augmentation System (SBAS) since 2003
 - Wide Area Augmentation System (WAAS) augmenting GPS
 - Development of GNSS Ground Based Augmentation System (GBAS) Continues
 - Local Area Augmentation System (LAAS)
 - CNSS is Cornerstone for National Airspace System

