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ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY  

 (JUANG-VENKATESAN) 

 This algorithm helps in recovery in asynchronous checkpointing. 

 The following are the assumptions made: 

 communication channels are reliable 

 delivery messages in FIFO order 

 infinite buffers 

 message transmission delay is arbitrary but finite 

 The underlying computation or application is event-driven: When process P is at states, 

receives message m, it processes the message; moves to state s’ and send messages out. 

So the triplet (s, m, msgs_sent) represents the state of P. 

 To facilitate recovery after a process failure and restore the system to a consistent 

state, two types of log storage are maintained: 

 Volatile log: It takes short time to access but lost if processor crash. 

The contents of volatile log are moved to stable log periodically. 

 Stable log: longer time to access but remained if crashed. 

Asynchronous checkpointing 

 After executing an event, a processor records a triplet (s, m, msg_sent) in its volatile 

storage. 

 s:state of the processor before the event 

 m: message 

 msgs_sent: set of messages that were sent by the processor during the 

event. 

 A local checkpoint at a processor consists of the record of an event occurring at the 

processor and it is taken without any synchronization with other processors. 

 Periodically, a processor independently saves the contents of the volatile log in the 

stable storage and clears the volatile log. 

 This operation is equivalent to taking a local checkpoint. 

Recovery Algorithm 

The data structures followed in the algorithm are: 
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RCVDi j (CkPti )This represents the number of messages received by processor pi 

from processor pj,  from the beginning of the computation until the checkpoint CkPti. 

SENTi j (CkPti ) 

This represents the number of messages sent by processor pi to processor pj, from the  

beginning of the computation until the checkpoint CkPti. 

 The main idea of the algorithm is to find a set of consistent checkpoints, from the set 

of checkpoints. 

 This is done based on the number of messages sent and received. 

 Recovery may involve multiple iterations of roll backs by processors. 

 Whenever a processor rolls back, it is necessary for all other processors to find out if 

any message sent by the rolled back processor has become an orphan message. 

 The orphan messages are identified by comparing the number of messages sent to 

and received from neighboring processors. 

 When a processor restarts after a failure, it broadcasts a ROLLBACK message that it 

has failed. 

 The recovery algorithm at a processor is initiated when it restarts after a failure or 

when it learns of a failure at another processor. 

 Because of the broadcast of ROLLBACK messages, the recovery algorithm is 

initiated at all processors. 

Procedure RollBack_Recovery: processor pi executes the following: STEP (a) 

if processor pi is recovering after a failure then 

Ck Pti := latest event logged in the stable storage 

else 

Ck Pti := latest event that look place in pi {The latest event at pi can be either in stable or in 

volatile storage} 

end if 

STEP(b) 

for k=1 to N {N is the number of processors in the system} do  

                                                                                                                               for each neighboring processor pj do 

          compute SENTi j (Ck Pti)  

 

          send a ROLLBACK(i, SENTi j (Ck Pti)) message to pj 
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            end for 

for every ROLLBACK(j,c) message received from a neighbor j do 

if RCVD i j (Ck Pti) > c {Implies the presence of orphan message} 

then 

find the latest event e such that RCVD i j (e) = c {Such an event e may be in 

the volatile storage or stable storage} 

Ck Pti := e 

               end if  

      end for 

     end for {for k} 

Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan) 

 The rollback starts at the failed processor and slowly diffuses into the entire 

system through ROLLBACK messages. 

 During the kth iteration (k != 1), a processor pi does the following: 

(i) based on the state CkPti it was rolled back in the (k − 1)th iteration, it 

computes SENTij (CkPti) for each neighbor pj and sends this value in a 

ROLLBACK message to that neighbor 

(ii) pi waits for and processes ROLLBACK messages that it receives from its 

neighbors in kth iteration and determines a new recovery point CkPt i for pi 

based on information in these messages. 

 

Fig : Asynchronous Checkpointing And Recovery 

At the end of each iteration, at least one processor will rollback to its final recovery point, 

unless the current recovery points are already consistent. 
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