
 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY

 (JUANG-VENKATESAN)

 This algorithm helps in recovery in asynchronous checkpointing.

 The following are the assumptions made:

 communication channels are reliable

 delivery messages in FIFO order

 infinite buffers

 message transmission delay is arbitrary but finite

 The underlying computation or application is event-driven: When process P is at states,

receives message m, it processes the message; moves to state s’ and send messages out.

So the triplet (s, m, msgs_sent) represents the state of P.

 To facilitate recovery after a process failure and restore the system to a consistent

state, two types of log storage are maintained:

 Volatile log: It takes short time to access but lost if processor crash.

The contents of volatile log are moved to stable log periodically.

 Stable log: longer time to access but remained if crashed.

Asynchronous checkpointing

 After executing an event, a processor records a triplet (s, m, msg_sent) in its volatile

storage.

 s:state of the processor before the event

 m: message

 msgs_sent: set of messages that were sent by the processor during the

event.

 A local checkpoint at a processor consists of the record of an event occurring at the

processor and it is taken without any synchronization with other processors.

 Periodically, a processor independently saves the contents of the volatile log in the

stable storage and clears the volatile log.

 This operation is equivalent to taking a local checkpoint.

Recovery Algorithm

The data structures followed in the algorithm are:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

RCVDi j (CkPti)This represents the number of messages received by processor pi

from processor pj, from the beginning of the computation until the checkpoint CkPti.

SENTi j (CkPti)

This represents the number of messages sent by processor pi to processor pj, from the

beginning of the computation until the checkpoint CkPti.

 The main idea of the algorithm is to find a set of consistent checkpoints, from the set

of checkpoints.

 This is done based on the number of messages sent and received.

 Recovery may involve multiple iterations of roll backs by processors.

 Whenever a processor rolls back, it is necessary for all other processors to find out if

any message sent by the rolled back processor has become an orphan message.

 The orphan messages are identified by comparing the number of messages sent to

and received from neighboring processors.

 When a processor restarts after a failure, it broadcasts a ROLLBACK message that it

has failed.

 The recovery algorithm at a processor is initiated when it restarts after a failure or

when it learns of a failure at another processor.

 Because of the broadcast of ROLLBACK messages, the recovery algorithm is

initiated at all processors.

Procedure RollBack_Recovery: processor pi executes the following: STEP (a)

if processor pi is recovering after a failure then

Ck Pti := latest event logged in the stable storage

else

Ck Pti := latest event that look place in pi {The latest event at pi can be either in stable or in

volatile storage}

end if

STEP(b)

for k=1 to N {N is the number of processors in the system} do

 for each neighboring processor pj do

 compute SENTi j (Ck Pti)

 send a ROLLBACK(i, SENTi j (Ck Pti)) message to pj

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 end for

for every ROLLBACK(j,c) message received from a neighbor j do

if RCVD i j (Ck Pti) > c {Implies the presence of orphan message}

then

find the latest event e such that RCVD i j (e) = c {Such an event e may be in

the volatile storage or stable storage}

Ck Pti := e

 end if

 end for

 end for {for k}

Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan)

 The rollback starts at the failed processor and slowly diffuses into the entire

system through ROLLBACK messages.

 During the kth iteration (k != 1), a processor pi does the following:

(i) based on the state CkPti it was rolled back in the (k − 1)th iteration, it

computes SENTij (CkPti) for each neighbor pj and sends this value in a

ROLLBACK message to that neighbor

(ii) pi waits for and processes ROLLBACK messages that it receives from its

neighbors in kth iteration and determines a new recovery point CkPt i for pi

based on information in these messages.

Fig : Asynchronous Checkpointing And Recovery

At the end of each iteration, at least one processor will rollback to its final recovery point,

unless the current recovery points are already consistent.

	ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY
	(JUANG-VENKATESAN)
	Asynchronous checkpointing
	Recovery Algorithm
	else
	end if
	end for
	then
	end if (1)
	end for (1)
	Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan)
	Fig : Asynchronous Checkpointing And Recovery

