LINE INTEGRAL -CAUCHY INTEGRAL THEOREM

If $f(z)$ is a continuous function of the complex variable $z=x+i y$ and C is any continuous curve connecting two points A and B on the z - plane then the complex line integral of $f(z)$ along C from A to B is denoted by $\int_{c} f(z) d z$ When C is simple closed curve, then the complex integral is also called as a contour integral and is denoted as $\oint_{C} f(z) d z$. The curve C is always take in the anticlockwise direction.
Note: If the direction of C is reversed (clockwise), the integral changes its sign

$$
(i e) \oint_{c} f(z) d z=-\oint f(z) d z
$$

Standard theorems:

1. Cauchy's Integral theorem (or) Cauchy's Theorem (or) Cauchy's Fundamental Theorem

Statement: If $f(z)$ is analytic and its derivative $f^{\prime}(z)$ is continuous at all points inside and on a
simple closed curve C then $\oint_{c} f(z) d z=0$
2. Extension of Cauchy's integral theorem (or) Cauchy's theorem for multiply connected Region Statement: If $f(z)$ is analytic at all points inside and on a multiply connected region whose outer boundary is C and inner boundaries are $C_{1}, C_{2}, \ldots, C_{n}$ then

$$
\int_{c} f(z) d z=\int_{c} f(z) d z+\int_{C_{2}} f(z) d z+\cdots+\int_{c_{n}} f(z) d z
$$

Example: Evaluate $\int_{o}^{3+i} z^{2} d z$ along the line joining the points $(0,0)$ and $(3,1)$
Solution:

$$
\text { Given } \int_{0}^{3+i} z^{2} d z
$$

Let $z=x+i y$
Here $z=0$ corresponds to $(0,0)$ and $z=3+i$ corresponds to $(3,1)$
The equation of the line joining $(0,0)$ and $(3,1)$ is

$$
y=\frac{x}{3} \Rightarrow x=3 y
$$

Now $z^{2} d z=(x+i y)^{2}(d x+i d y)$

$$
\begin{aligned}
& =\left[x^{2}-y^{2}+i 2 x y\right][d x+i d y] \\
& =\left[\left(x^{2}-y^{2}\right)+i 2 x y\right][d x+i d y]
\end{aligned}
$$

$$
=\left[\left(x^{2}-y^{2}\right) d x-2 x y d y\right]+i\left[2 x y d x+\left(x^{2}-y^{2}\right) d y\right]
$$

Since $x=3 y \Rightarrow d x=3 d y$

$$
\begin{aligned}
\therefore z^{2} d z & =\left[8 y^{2}(3 d y)-6 y^{2} d y\right]+i\left[18 y^{2} d y+8 y^{2} d y\right] \\
& =18 y^{2} d y+i 26 y^{2} d y \\
\therefore \int_{0}^{3+i} z^{2} d z= & \int_{0}^{\prime}\left[18 y^{2}+i 26 y^{2}\right] d y \\
& =\left[18 \frac{y^{2}}{3}+i 26 \frac{y^{3}}{3}\right]_{0}^{\prime} \\
& =6+i \frac{26}{3}
\end{aligned}
$$

Example: Evaluate $\int_{0}^{2+i}\left(x^{2}-i y\right) d z$

Solution:

Let $z=x+i y$
Here $z=0$ corresponds to $(0,0)$ and $z=2+i$ corresponds to $(2,1)$
Now $\left(x^{2}-i y\right) d z=\left(x^{2}-i y\right)(d x+i d y)$

$$
\left.=x^{2} d x+y d y\right)+i\left(x^{2} d y-y d x\right)
$$

Along the path $y=x^{2} \Rightarrow d y=2 x d x$

$$
\begin{aligned}
& \therefore\left(x^{2}-i y\right) d z= \\
& \int_{0}^{2+i}\left(x^{2}-i y\right) d z=\int_{0}^{2}\left(x^{2}+2 x^{3}\right) d x+i\left(2 x^{3} d x\right)+i\left(2 x^{3} d x-x^{2} d x\right) d x \\
&=\left[\frac{x^{3}}{3}+\frac{2 x^{4}}{4}\right]_{0}^{2}+i\left[\frac{2 x^{4}}{4}=\frac{x^{3}}{3}\right]_{0}^{2} \\
&=\left(\frac{8}{3}+\frac{16}{2}\right)+i\left(\frac{16}{2}-\frac{8}{3}\right) \\
&=\frac{32}{3}+i \frac{16}{3}
\end{aligned}
$$

Example: Evaluate $\int_{c_{-}} e^{\frac{1}{z}} \boldsymbol{d z}$, where $\boldsymbol{C} \boldsymbol{i s}|z|=2$
Solution:
Let $f(z)=e^{\frac{1}{z}}$ clearly $f(z)$ is analytic inside and on C.
Hence, by Cauchy's integral theorem we get $\int_{c} e^{\frac{1}{z}} d z=0$
Example: Evaluate $\int_{c} z^{2} e^{\frac{1}{z}} d z$, where C is $|z|=1$

Solution:

$$
\text { Given } \int_{c} z^{2} e^{1 / z} d z
$$

$$
=\int_{c} \frac{z^{2}}{e^{-1 / z}} d z
$$

$D r=0 \Rightarrow z=0$, We get $e^{-\frac{1}{0}}=e^{-\infty}=0$
$z=0$ lies inside $|z|=1$.
Cauchy's Integral formula is

$$
\int_{c} z^{2} e^{1 / z} d z=2 \pi i f(0)=0
$$

Example: Evaluate $\int_{c} \frac{1}{2 z-3} d z$ where C is $|z|=1$

Solution:

$$
\text { Given } \int_{c} \frac{1}{2 z-3} d z
$$

$$
\operatorname{Dr}=0 \Rightarrow 2 z-3=0, \Rightarrow z=\frac{3}{2}, \text { होN } \equiv 2 / 1 /
$$

Given C is $|z|=1$

$$
\Rightarrow|z|=\left|\frac{3}{2}\right|=\frac{3}{2}>1
$$

$\therefore z=\frac{3}{2}$ lies outside C
\therefore By Cauchy's Integral theorem, $\int_{c} \frac{1}{2 z-3} d z=0$
Example: Evaluate $\int_{c} \frac{d z}{z+4}$ where C is $|z|=2$

Solution:

$$
\text { Given } \int_{C} \frac{d z}{z+4}
$$

Dr $=0 \Rightarrow z+4=0 \Rightarrow z=-4$
Given C is $|z|=2$

$$
\Rightarrow|z|=|-4|=4>2
$$

$\therefore z=-4$ lies outside C.
\therefore By Cauchy's Integral Theorem, $\int_{c}-\frac{d z}{z+4}=0$

