STEEL ROOF TRUSSES - ROOFING ELEMENTS

4.2 Design of steel roof truss

Example 2

Design a steel roof truss to suit the following data,

Span of the truss	$=10 \mathrm{~m}$
Type of truss	$=$ pan type
Roof cover	$=$ Galvanization corrugated (GC) sheeting
Materials	$=$ Rolled steel angles
Spacing of roof truss	$=4.5 \mathrm{~m}$
Wind pressure	$=1 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

Draw the elevation of the roof truss and the details of joints.

Solution:

Step:1 Dimension of truss

$$
\begin{aligned}
\text { Central rise } & =\text { span } / 4 \\
& =10 / 4 \\
& =2.5 \mathrm{~m}
\end{aligned}
$$

Purlins are provided at intervals of 1.863 m on the principal rafter

Fig.4.1 Roof truss

Step:2 Dead loads

Self weight of GC sheeting per purlin at $0.18 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

$$
\begin{aligned}
& =0.18 \times 1.863 \\
& =0.335 \mathrm{KNm}
\end{aligned}
$$

Self weight of purlin at $0.1 \mathrm{KN} / \mathrm{m}$

$$
=0.10 \mathrm{KN} / \mathrm{m}
$$

Total dead load $\quad=0.435 \mathrm{KN} / \mathrm{m}$

Step:3 Live loads
Slope of the truss $=26^{\circ} 34^{-}$
Live load of the truss

$$
\begin{aligned}
& =0.75-(10 \times 0.01+6.5 \times 0.02) \\
& =0.52 \mathrm{KN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Live load per purlin per metre

$$
\begin{aligned}
& =0.52 \times 1.836 x \cos 26 \dot{\circ} 34^{\prime} \\
& =0.87 \mathrm{KN}
\end{aligned}
$$

Step:4 Wind loads

$$
\begin{array}{ll}
\mathrm{F} & =(\mathrm{Cpe}-\mathrm{Cpi}) \mathrm{A} \mathrm{pd} \\
\mathrm{Cpe} & =\text { external pressure coefficient } \\
\mathrm{Cpi} & =\text { internal pressure coefficient } \\
\mathrm{A} & =\text { Surface area of structural element or cladding unit } \\
\mathrm{pd} & =\text { design wind pressure }
\end{array}
$$

Slopping angle ,

$$
\theta=2634
$$

$$
\begin{aligned}
\text { Cpe } & =-0.7 \\
\mathrm{Cpi} & =0.2 \\
\mathrm{~F} & =(-0.7-0.2) \mathrm{pd} \\
& =-0.9 \mathrm{pd} \\
& =-0.9 \mathrm{x} 1 \\
& =-0.9 \mathrm{Kn} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Maximum wind load per purlin per metre

$$
\begin{aligned}
& =\left(-0.9 \times 1.863 x \cos 26^{\circ} 34^{\circ}\right) \\
& =1.5 \mathrm{KN}
\end{aligned}
$$

Step:5 Design of purlin

For continuous purlin, the max factored bending moment and shear force are computed as follow,

$$
\begin{aligned}
\mathrm{M} & =\left(1.5 \times 1.305 \times 4.5^{\wedge} 2\right) / 10 \\
& =3.96 \mathrm{KNm} \\
\mathrm{~V} & =(1.5 \times 1.305 \times 4.5) / 2 \\
& =4.4 \mathrm{KN}
\end{aligned}
$$

Adopt ISA 100x75x8mm having section properties given below,

$$
\mathrm{Zx}=\left(4.38 \mathrm{x} 10^{\wedge} 4\right) \mathrm{mm}^{\wedge} 3
$$

D $=100 \mathrm{~mm}$
$\mathrm{b} \quad=75 \mathrm{~mm}$
$\mathrm{t} \quad=8 \mathrm{~mm}$

IS 800:2007 clause 3.7,
(a) Check for section classification is done by computed the rations,

$$
\begin{aligned}
(\mathrm{b} / \mathrm{t}) & =75 / 8 \\
& =9.37<9.4
\end{aligned}
$$

Hence the section considered as plastic .
(b) Check for shear capacity

$$
\begin{aligned}
\mathrm{Av} & =100 \mathrm{X} 8 \\
& =800 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

clause 8.4.1,

$$
\begin{aligned}
(\text { Av fy w/V3 } \gamma \mathrm{mo}) & =(800 \times 250) /\left(\mathrm{V} 3 \times 1.10 \times 10^{\wedge} 3\right) \\
& =105 \mathrm{KN}>4.40 \mathrm{KN}
\end{aligned}
$$

The shear capacity of the section is very large compared to the applied shear force.
(c) Check for moment capacity

$$
\begin{aligned}
\mathrm{Md} & =(\beta b \mathrm{Zx} \text { fy }) / \gamma \mathrm{mo} \\
& =\left(1 \times 4.38 \times 10^{\wedge} 4 \times 250\right) /\left(1.1 \times 10^{\wedge} 6\right) \\
\mathrm{Md} & =9.95 \mathrm{KNm}>3.96 \mathrm{KNm}
\end{aligned}
$$

Step:7 Load on truss
(a) Dead load

Slopping length of rafter,

$$
\begin{aligned}
\mathrm{AD} & =\mathrm{V}\left(5^{\wedge} 2+2.5^{\wedge} 2\right) \\
& =5.59 \mathrm{~m}
\end{aligned}
$$

Spacing of trusses $=4.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$
Weight of GC sheeting on half truss (plan area) at $0.18 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

$$
\begin{aligned}
& =4.5 \times 5 \times 0.18 \\
& =4.05 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Weight of purlins }(4 \mathrm{nos}) \text { at } 0.10 \mathrm{KN} / \mathrm{m} \\
&=4 \times 0.1 \times 4.5 \\
&=1.8 \mathrm{KN} \\
&=(\operatorname{span} / 300)+0.05 \\
&=(10 / 300)+0.05 \\
& \text { Self weight of roof truss }=0.083 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
& \text { Weight of half roof truss }=0.083 \times 5 \times 4.5 \\
&=1.86 \mathrm{KN} \\
& \text { Total load on half truss }=4.05+1.8+1.86 \\
&=7.71 \mathrm{KN}
\end{aligned}
$$

Dead load on intermediate- panel point

$$
\begin{aligned}
& =7.71 / 3 \\
& =2.57 \mathrm{KN}
\end{aligned}
$$

Dead load on end panel point $=2.57 / 2$

$$
=1.285 \mathrm{KN}
$$

(b) Live loads

$$
\begin{aligned}
\text { Live load on half truss } & =0.52 \times 5 \times 4.5 \\
& =11.7 \mathrm{KN}
\end{aligned}
$$

Live load on intermediate panel point

$$
\begin{aligned}
& =11.7 / 3 \\
& =3.9 \mathrm{KN}
\end{aligned}
$$

Live load on end panel point $=3.9 / 2$

$$
=1.95 \mathrm{KN}
$$

(c) Wind loads

Maximum wind load acting perpendicular to the sloping surface

$$
\begin{aligned}
& =0.9 \times 4.5 \times 5.59 \\
& =-22.63 \mathrm{KN}
\end{aligned}
$$

Wind load on intermediate- panel point

$$
\begin{aligned}
& =-(22.68 / 3) \\
& =-7.5 \mathrm{KN}
\end{aligned}
$$

Wind load on end panel point $=-(7.5 / 2)$

$$
=3.75 \mathrm{KN}
$$

Step:8 Design of truss members
(a) Members $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$

Maximum service load compressive force

$$
=36.17 \mathrm{KN}
$$

Maximum factored compressive force

$$
\begin{aligned}
& =1.5 \times 36.17 \\
& =54.25 \mathrm{KN}
\end{aligned}
$$

Maximum service load tensile force

$$
=22.95 \mathrm{KN}
$$

Maximum factored tensile force

$$
\begin{aligned}
& =1.5 \times 22.95 \\
& =34.42 \mathrm{KN}
\end{aligned}
$$

$$
\text { Length }(\mathrm{L}) \quad=1.863 \mathrm{~m}
$$

Effective length $(\mathrm{KL})=1.304 \mathrm{~m}$

Try two angle ISA 50x50x6mm placed back to back

$$
\text { Area }(\mathrm{A}) \quad=1136 \mathrm{~mm}^{\wedge} 2
$$

Minimum radius of gyration $(\gamma \mathrm{min})=15.1 \mathrm{~mm}$

$$
\begin{array}{ll}
\text { Slenderness ratio } & =(\mathrm{KL} / \gamma \min) \\
& =1304 / 15.1 \\
& =86.3<180
\end{array}
$$

Stress reduction factor x for column buckling class (c) corresponding to the slenderness

$$
\begin{aligned}
\text { ratio } 86.3 \text { and fy } & =250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \\
x & =0.56
\end{aligned}
$$

:Design compressive stress is computed as,

$$
\begin{aligned}
\text { Fcd } & =\mathrm{x} \mathrm{fy} / \gamma \mathrm{mo} \\
& =(0.56 \times 250) / 1.25 \\
& =112 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Design compressive force is given by,

$$
\begin{aligned}
\operatorname{Pd} & =[\mathrm{A} \mathrm{fcd}] \\
& =(1136 \times 112) / 1000 \\
& =127 \mathrm{KN}>54.25 \mathrm{KN}
\end{aligned}
$$

(b) Member DE

Maximum service load tension

$$
=12.83 \mathrm{KN}
$$

Maximum factored load tension

$$
\begin{aligned}
& =1.5 \times 12.83 \\
& =19.24 \mathrm{KN}
\end{aligned}
$$

Maximum service load compression

$$
=9.57 \mathrm{KN}
$$

Maximum factored load compression

$$
\begin{aligned}
& =1.5 \times 9.57 \\
& =14.35 \mathrm{KN} \\
\text { Effective length } & =3 \mathrm{~m}
\end{aligned}
$$

Try a single angle ISA $50 x 50 x 5 \mathrm{~mm}$ connected by 6 mm thick gusset plate the junction with
two bolts of 16 mm at 50 mm .

$$
\begin{aligned}
\text { Gross area }(\mathrm{A}) & =479 \mathrm{~mm}^{\wedge} 2 \\
\gamma \mathrm{~min} & =15.2 \mathrm{~mm}
\end{aligned}
$$

Using 16mm dia bolts,

$$
\begin{aligned}
\text { Anc } & =[50-18] 5 \\
& =160 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{Ago} & =[50-5] 5 \\
& =225 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{Ag} & =479 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

(a) Strength governed by rupture of critical section

Tdn $=[0.9$ Anc fy $/ \gamma \mathrm{mi}]+[\beta$ Ago fy $/ \gamma \mathrm{mo}]$
where,
$B=1.4-0.076(\mathrm{w} / \mathrm{t})(\mathrm{fy} / \mathrm{fu})(\mathrm{bs} / \mathrm{Lc})$

$$
\begin{aligned}
& =1.4-0.076(50 / 5)(250 / 410)(50+25 / 50) \\
\beta & =0.70 \\
\mathrm{Tdn} & =[0.9 \times 160 \times 410 / 1.25]+[0.7 \times 225 \times 250 / 1.10] \times 10^{\wedge} 3 \\
& =83.02 \mathrm{KN}=\mathrm{T}_{0}
\end{aligned}
$$

(b) Strength governed by yielding of gross section

$$
\begin{aligned}
\mathrm{Tdg} & =\mathrm{Ag} \text { fy } / \gamma \mathrm{mo} \\
& =\left(470 \times 250 \times 10^{\wedge} 3\right) / 1.10 \\
& =108.8 \mathrm{KN}
\end{aligned}
$$

(c) Strength governed by block shear

$$
\begin{aligned}
\text { Avg } & =5[50+50] \\
& =500 \mathrm{~mm}^{\wedge} 2 \\
\text { Avn } & =5[50+50]-[1.5 \mathrm{x} 18] \\
& =473 \mathrm{~mm}^{\wedge} 2 \\
\text { Atg } & =[5 \times 25] \\
& =125 \mathrm{~mm}^{\wedge} 2 \\
\text { Atn } & =[(5 \times 25)-(0.5 \times 18)] \\
& =116 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

The block shear strength is the smaller of the value of Tdb1 and Tdb2 as computed using the equation given below,

$$
\begin{aligned}
\mathrm{Tdb} 1 & =[\mathrm{Avg} \mathrm{fy} / \mathrm{V} 3 \gamma \mathrm{mo}]+[0.9 \mathrm{Atn} \mathrm{fu} / \gamma \mathrm{mi}] \\
& =[(500 \times 250) /(\mathrm{V} 3 \times 1.1)+(0.9 \times 116 \times 410) / 1.25] \\
& =99.92 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Tdb} 2 & =[0.9 \mathrm{Avn} \mathrm{fu} / \mathrm{V} 3 \gamma \mathrm{mi}]+[\mathrm{Atg} \mathrm{fy} / \gamma \mathrm{mo}] \\
& =[(0.9 \mathrm{x} 473 \times 410) /(\mathrm{V} 3 \times 1.25)+(125 \times 250) / 1.10] \\
& =109.12 \mathrm{KN}
\end{aligned}
$$

Hence, $\mathrm{Tdb}=109.12 \mathrm{KN}$
The design shear strength is the least of the three value computed under (a)(b)(c), which are $108.8 \mathrm{KN}, 83.02 \mathrm{KN}, 109.12 \mathrm{KN}$.

The design tensile strength of angle $=83.02 \mathrm{KN}>19.24 \mathrm{KN}$
(C) Member BC ,EB

Service load compressive force	$=6.95 \mathrm{KN}$
Factored compressive force	$=1.5 \times 6.95$
	$=10.42 \mathrm{KN}$
Service load tensile force	$=6.38 \mathrm{KN}$
Factored tensile force	$=1.5 \times 6.38$
	$=9.57 \mathrm{KN}$
Effective length (kL)	$=0.7 \times 1.6$
	$=1.12 \mathrm{~m}$

Use minimum size angle ISA $50 \times 50 \times 5 \mathrm{~mm}$,

$$
\begin{aligned}
\text { Area }(\mathrm{A}) & =479 \mathrm{~mm}^{\wedge} 2 \\
\gamma \mathrm{~min} & =9.7 \mathrm{~mm} \\
\text { Slenderness ratio }(\lambda) & =1120 / 9.7 \\
& =115
\end{aligned}
$$

The stress reduction factor x corresponding to $\mathrm{fy}=250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ and $\lambda=115$

$$
\mathrm{x} \quad=0.39
$$

Design compressive stress is computed as,

$$
\begin{aligned}
\mathrm{fcd} & =\mathrm{x} \mathrm{fy} / \gamma \mathrm{mo} \\
& =(0.39 \times 250) / 1.25 \\
& =78 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Design compressive force is given by ,

$$
\begin{aligned}
\mathrm{Pd} & =\mathrm{A} \mathrm{fcd} \\
& =[479 \times 78] / 1000 \\
& =37.36 \mathrm{KN}>10.42 \mathrm{KN}
\end{aligned}
$$

(d) Member EA and EF

Max service load tension	$=32.21 \mathrm{KN}$
Factored tension	$=1.5 \times 32.21$
	$=748.31 \mathrm{KN}$

Max service load compression

	$=18.84 \mathrm{KN}$
Factored compression	$=1.5 \times 18.84$
	$=28.26 \mathrm{KN}$
Length of member	$=3.33 \mathrm{~m}$
Effective length (kL)	$=0.7 \times 3.33$
	$=2.331 \mathrm{~m}$

Try minimum two angle ISA 50x50x6mm connect by guesst plate 6 mm thick with two 16 mm dia bolts spaced at 50 mm

$$
\begin{aligned}
\text { Area }(\mathrm{A}) & =2 \times 598 \\
& =113.6 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

$$
\gamma \min =15.1 \mathrm{~mm}
$$

i) Design strength due to yielding of cross section ,

$$
\begin{aligned}
\mathrm{Tdj} & =\text { Ag fy } / \gamma \mathrm{mo} \\
& =[(1136+250) / 1.10] \times 10^{\wedge}-3 \\
& =258 \mathrm{KN}
\end{aligned}
$$

ii) Design strength governed by tearing at net section,

$$
\mathrm{Tdn}=\alpha \mathrm{An} \mathrm{fu} / \gamma \mathrm{mi}
$$

Assume a single line of 16 mm dia bolts of two number spaced 50 mm apart $\mathrm{x}=0.6$

$$
\begin{aligned}
\text { An } & =[(50-18)(6 \times 2)] \\
& =384 \mathrm{~mm}^{\wedge} 2 \\
\text { Tdn } & =[(0.6 \times 384 \times 410) / 1.25] \times 10^{\wedge}-3 \\
& =75.5 \mathrm{KN}>48.31 \mathrm{KN}
\end{aligned}
$$

Hence, the angle section designed for the truss can safely resist the factored loads.

Example 2

A beam column is to be designed to support a factored axial load of 500 KN (tension). Factored moment Mx Acting at top and bottom of the column are 30 KNm and 50 KNm respectively. Effective length of column may be Taken as 3.2 m . Assuming $\mathrm{fy}=250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$, design the beam column section and check the same to conform the Specification of the Indian standard code IS 800:2007.

Solution:

Given data:

Factored axial load	$=600 \mathrm{KN}$ (tension)
Bending moment at top	$=30 \mathrm{KNm}$
Bending moment at bottom	$=50 \mathrm{KNm}$

Yield stress of steel $\quad=250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

Step 1 Selection of beam column section

$$
\begin{aligned}
\mathrm{Mdx} & =\mathrm{Z}_{0} \mathrm{fy} / \gamma \mathrm{mo} \\
& =\left(62 \times 10^{\wedge} 4 \times 250\right) /\left(1.1 \times 10^{\wedge} 6\right) \\
& =140.7 \mathrm{KNm} \\
\mathrm{Tdg} & =\mathrm{fy} \mathrm{Ag} / \gamma \mathrm{mo} \\
& =250 \times 6500 / 1.10 \times 1000 \\
& =1477.3 \mathrm{KN}
\end{aligned}
$$

Desgin strength due to rupture of critical section,

$$
\begin{aligned}
\mathrm{Tdn} & =0.9 \mathrm{fy} \mathrm{An} / \gamma \mathrm{mi} \\
& =(0.9 \times 415 \times 6500) /(1.25 \times 1000) \\
& =1942.2 \mathrm{KN}
\end{aligned}
$$

The design strength $\mathrm{Td}=1477.3 \mathrm{KN}$

Step 2 Check for resistance of cross section to combined effects

Using the interaction equation,

$$
\begin{aligned}
& {\left[\begin{array}{rl}
{[\mathrm{N} / \mathrm{Nd}} & +\mathrm{Mx} / \mathrm{Mdx}+\mathrm{My} / \mathrm{Mdy}] \leq 1.0 \\
\mathrm{Nd} & =\mathrm{Ag} \text { fy } / \gamma \mathrm{mo} \\
& =6500 \mathrm{x} 250 / 1.1 \mathrm{x} 1000 \\
& =1477.3 \mathrm{KN}
\end{array}\right.} \\
& \begin{aligned}
\mathrm{Mx} & =50 \mathrm{KNm} \text { and }
\end{aligned} \\
& \mathrm{Mdx}=140.7 \mathrm{KNm} \\
& \therefore[600 / 1477.3+50 / 140.7]=0.756<1
\end{aligned}
$$

Hence safe

Step 3 : Check for lateral torsional buckling resistance

Reduced effective moment is computed as,

$$
\begin{aligned}
\text { Meff } & =[\mathrm{M}-\Psi \mathrm{Tt} \mathrm{Zec} / \mathrm{A}] \leq \mathrm{Md} \\
& =\left[\left(50 \times 10^{\wedge} 6\right)-\left(0.8 \times 600 \times 10^{\wedge} 3 \times 619 \times 10^{\wedge} 3\right) / 6500\right] \\
& =4.3 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =4.3 \mathrm{KNm}<127.3 \mathrm{KNm}
\end{aligned}
$$

Step 4 Check for overall buckling strength

$$
\begin{aligned}
& {[\mathrm{P} / \mathrm{Pdx}+\mathrm{Meff} / \mathrm{Mdx}] \leq 1.0} \\
& {[600 / 1477.3+4.3 / 127.3]=0.439<1.0}
\end{aligned}
$$

Hence safe

