
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

The transmit time of a logical unit is used as a time base in comparing the

operating speeds of different methods, and the number of individual logical

units required is used in the comparison of costs.

2.4 HIGH PERFROMANCE ARTHMETIC

The performance improvement in arithmetic operations like addition,

multiplication and division will increase the overall computational speed

of the machine.

High performance adders

The high performance adders takes an extra input namely the transit time.

The two multi-bit numbers being added together will be designated as A

and B, with individual bits being A1, A2, B1, etc. The third input will be C.

Outputs will be S (sum) R (carry), and T (transmit). The two multi bit numbers

being added together will be designated asA and B, with individual bits being A1,

A2, B1, etc. The third input will be C. Outputs will be S (sum) R (carry), and T

(transmit).

The time required to perform an addition in conventional adder is

dependent on the time required for a carry originating in the first stage to

ripple through all intervening stages to the S or R output of the final stage.

Using the transit time of a logical block as a unit of time, this amounts to two

levels to generate the carry in the first stage, plus two levels per stage for

transit through each intervening stage, plus two levels to form the sum in

the final stage, which gives a total of two times the number of stages.

Cn=Rn-1

Cn=Dn-1 || Tn-1 Rn-2

Cn=Dn-1 || Tn-1 Dn-2 || Tn-1Tn2 Rn-3

By allowing n to have successive values starting with one and

omitting all terms containing a a resulting negative subscript, it may be

seen that each stage of the adder will require one OR stage with n inputs

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

and n AND circuits having one through n inputs, where N is the position

number of the particular stage under consideration.

High performance Multiplication Multiplication using variable length shift

 The multiplier and the partial product will always be shifted the same

amount and at

the same time.

 The multiplier is shifted in relation to the decoder, and the

partial product with relation to the multiplicand.

 Operation is assumed starting at the low-order end of the

multiplier, which means that shifting is to the right.

 If the lowest-order bit of the multiplier is a one, it is treated as

though it had been approached by shifting across zeros.

Rules:

 When shifting across zeros (from low order end of multiplier), stop at

the first one.

a) If this one is followed immediately by a zero, add the

multiplicand, then shift across all following zeros.

b) If this one is followed immediately by a second one, subtract

the multiplicand, then shift across all following ones.

2. When shifting across ones (from low order end of multiplier), stop at

the first zero.

a) If this zero is followed immediately by a one, subtract the

multiplicand, then shift across all following ones.

b) If this zero is followed immediately by a second zero, add the

multiplicand, then shift across all following zeros.

 A shift counter or some equivalent device must be provided to

keep track of the number of shifts and to recognize the completion

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

of the multiplication.

 If the high-order bit of the multiplier is a one and is

approached by shifting across ones, that shift will be to the first

zero beyond the end of the multiplier, and that zero along with

the bit in the next higher order position of the register will be

decoded to determine whether to add or subtract.

 For this reason, if the multiplier is initially located in the part of

the register in which the product is to be developed, it should be

so placed that there will be at least two blank positions between

the locations of the low-order bit of the partial product and the

high-order bit of the multiplier.

 Otherwise the low-order bit of the product will be decoded as part of

the multiplier.

Multiplication Using Uniform Shifts

 Multiplication which uses shifts of uniform size and permits

predicting the number of cycles that will be required from the

size of the multiplier is preferable to a method that requires

varying sizes of shifts.

 The most important use of this method is in the application of

carry-save adders to multiplication although it can also be used

for other applications.

Uniform shifts of two

 Assume that the multiplier is divided into two-bit groups, an extra

zero being added to the high-order end, if necessary, to produce

an even number of bits.

 Only one addition or subtraction will be made for each group, and,

using the position of the low-order bit in the group as a reference,

this addition or subtraction will consist of

either two times or four times the multiplicand.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

 These multiples may be obtained by shifting the position of entry

of the multiplicand into the adder one or two positions left from

the reference position.

 The last cycle of the multiplication may require special handling.

 Following any addition or subtraction, the resulting partial

product will be either correct or larger than it should be by an

amount equal to one times the multiplicand.

 Thus, if the high-order pair of bits of the multiplier is 00 or 10, the

multiplicand would be multiplied by zero or two and added,

which gives a correct partial product.

If the high-order pair of bits is 01 or 11, the multiplicand is

multiplied by two or four, not one or three, and added. This

gives a partial product that is larger than it should be, and the

next add cycle must correct for this.

 Following the addition the partial product is shifted left- two

positions. This multiplies it by four, which means that it is now

larger than it should be by four times the multiplicand.

 This may be corrected during the next addition by subtracting the

difference between four and the desired multiplicand multiple.

 Thus, if a pair ends in zero, the resulting partial product will be

correct and the following operation will be an addition.

 If a pair ends in a one, the resulting partial product will be too

large, and the following operation will be a subtraction.

 It can now be seen that the operation to be performed for any

pair of bits of the multiplier may be determined by examining

that pair of bits plus the low-order bit of

the next higher-order pair.

 If the bit of the higher-order pair is a zero, an addition will result; if

it is one, a

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

subtraction will result. If the low-order bit of a pair is considered to

have a value of one and the high-order bit a value of two, then

the multiple called for by a pair is the numerical value of the

pair if that value is even and one greater if it is odd.

 If the operation is an addition, this multiple of the multiplicand is used.

If the operation

is a subtraction (the low-order bit of the next higher order pair a

one), this value is combined with minus four to determine the

correct multiple to use.

 The result will be zero or negative, with a negative result meaning

subtract instead of add.

Multiplication Using Carry-Save Adders

 When successive additions are required before the final

answer is obtained, it is possible to delay the carry propagation

beyond one stage until the completion of all of the additions, and

then let one carry-propagate cycle suffice for all the additions.

Adders used in this manner are called carry-save adders.

 A carry-save adder consists of a number of stages, each similar

to the full adder. It differs from the ripple-carry adder in that the

carry (R) output is not connected directly

Multiplication Using Carry-Save Adders

 When successive additions are required before the final

answer is obtained, it is possible to delay the carry propagation

beyond one stage until the completion of all of the additions, and

then let one carry-propagate cycle suffice for all the additions.

Adders used in this manner are called carry-save adders.

 A carry-save adder consists of a number of stages, each similar

to the full adder. It differs from the ripple-carry adder in that the

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

carry (R) output is not connected directly form of SIMD(Single

Instruction Multiple Data) processing. It is possible to apply

sub word parallelism to noncontiguous sub words of different

sizes within a word.

 In practical implementation is simple if sub words are same size

and they are contiguous within a word. The data parallel

programs that benefit from sub word parallelism tend to process

data that are of the same size.

Example: If word size is 64bits and sub words sizes are 8,16 and 32

bits. Hence an instruction operates on eight 8bit sub words, four 16bit

sub words, two 32bit sub words or one 64bit sub word in parallel.

