
Rohini college of Engineering and technology 

27 
CS8392 Object Oriented Programming 

 

 

 

 

2.7. INNER CLASSES 
Inner classes are the nested classes. We can simply represent that are defined inside the other 
classes.The below syntax defining the inner class is 

Access_modifier class outerClass 
{ 

//code 
Access_modifier class InnerClass 
{ 

//code 
} 
} 

Properties of Inner class: 
1 .The outer class can take over as many number of innerclass objects as it needs. 
2.If the outer class and the equivalent inner class both are public then any new class can create an 
instance of this inner class. 
3.The inner class objects do not get instantiated with outer class object 
4.outer class can be able to call the private functions of inner class. 
5.Inner class code has openway to all members of the outer class object that contains it. 
6.If the inner class has a variable with same name then the variable of outer class’s can be accessed in 
given syntax 

Outerclassname.this.variable_name 

Types of Inner class: 
There are four kinds of inner classes 

1.Static member classes 
2 .Member classes 
3 .Local classes 
4 .Anonymous classes 

1.Static member classes 
• This inner class can be defined as the static member variable of other class. 
• Static members of the outer class can access the static inner class. 

• The non-static members of the outer class are not accessible to inner class. 

Syntax: 
Access_modifier class OuterClass 
{ 

//Code 

public static class InnerClass 

{ 
//Code 

} 
} 



Rohini college of Engineering and technology 

28 
CS8392 Object Oriented Programming 

 

 

2.Member classes 
This kind of inner class is non-static fields of outer class. 

3.Local classes 
This class is defined inside a Java code just similar to a local variable. 
Local classes are not at all declared with an access specifier. 
The life time of inner classes is constantlylimited to the block in which they are declared. 
The local classes are totally hidden from the outside world. 

Syntax: 
Access_modifier class OuterClass 

{ 
//Code 

Access_modifierreturn_typemethodname(arguments) { 
classInnerclass 

{ 
//Code 

} 
//Code 

} 

4.Anonymous classes 
Anonymous class is a local class with nospecified name. 
Anonymous class is a one-shot class formed exactly where required. 
The anonymous class is created in below situations 

• When the class has very small body. 

• Only one instance of the class is desired. 
• Class is used directly after defining it. 

The anonymous inner class can be able to extend the class,it can implement the interface or it can be 
stated in function argument. 

Example: 
class MyInnerClass implements Runnable 

{ 
public void run() 

{ 
System.outprmtin("Hello”); 

} 

class DemoClass 

{ 
public static void main(String args[]) 

{ 

MyInnerClass my=new MyInnerClass(); 
Thread th=new Thread(my); 
my.start(); 

} 
} 
} 



Rohini college of Engineering and technology 

29 
CS8392 Object Oriented Programming 

 

 

Example2: 
class Outer 

{ 
int x=100; 

void test() 

{ 
Inner inner=new Inner(); 
Inner.display(); 

} 

class Inner 

{ 
void display() 

{ 
System.outprintln("display x:”+x); 

} 
} 
} 

class IC 

{ 
public static void main(String args[]) 

{ 
Outer outer=new Outer(); 
outer.test(); 

} 
} 

2.8. ARRAY LIST CLASS 
Dynamic array is used in ArrayList class for storing the elements. It derivesAbstractList class and 
implements List interface. 

Features of Java ArrayList class are: 

• Java ArrayList class can hold duplicate elements. 
• Java ArrayList class maintains insertion order. 
• Java ArrayList class is non-synchronized. 
• Java ArrayList allows random access since array works at the index basis. 
• In Java ArrayList class, operation is slow because a lot of shifting wants to be occurred if any 

element is deleted from the array list.ArrayList class hierarchy is specified in below  



Rohini college of Engineering and technology 

30 
CS8392 Object Oriented Programming 

 

 

  

Example: 

import java.util.*; 

class TestCollection1{ 

public static void main(String args[]){ 

ArrayList<String> list=new ArrayList<String>();//Creating arraylist list.add("Ravi");//Adding object 

in arraylist 

list.add("Vijay"); 

list.add("Ravi"); 

list.add("Ajay"); 

//Traversing list through Iterator 

Iterator itr=list.iterator(); 

while(itr.hasNext()){ 

Two possible ways to iterate the elements of collection in java 

There are two ways to visit collection elements: 

1. By Iterator interface. 
2. By for-each loop. 

In the above example, we have seen visting ArrayList by Iterator. Let's see the example to go across 
ArrayList elements using for-each loop. 



Rohini college of Engineering and technology 

31 
CS8392 Object Oriented Programming 

 

 

Iterating Collection through for-each loop 
import java.util.*; 
class TestCollection2{ 
public static void main(String args[]){ 
ArrayList<String> al=new ArrayList<String>(); 
al.add("Ravi"); 
al.add("Vijay"); 
al.add("Ravi"); 
al.add("Ajay"); 
for(String obj:al) 

System.out.println(obj); 
} 
} 

Ravi 
Vijay 
Ravi 
Ajay 

User-defined class objects in Java ArrayList 

Let we see another example where we are storing Student class object in array list. 

class Student{ 
int rollno; 
String name; 
int age; 
Student(int rollno,String name,int age){ 
this.rollno=rollno; 
this.name=name; 
this.age=age; 
} 
} 

import java.util.*; 
public class TestCollection3{ 
public static void main(String args[]){ 
//Creating user-defined class objects 

Student s1=new Student(101,"Sonoo",23); 
Student s2=new Student(102,"Ravi",21); 
Student s2=new Student(103,"Hanumat",25); 
//creating arraylist 
ArrayList<Student> al=new ArrayList<Student>(); 
al.add(s1);//adding Student class object 
al.add(s2); 
al.add(s3); 
//Getting Iterator 
Iterator itr=al.iterator(); 
//traversing elements of ArrayList object 



Rohini college of Engineering and technology 

32 
CS8392 Object Oriented Programming 

 

 

while(itr.hasNext()){ 
Student st=(Student)itr.next(); 
System.out.println(st.rollno+" "+st.name+" "+st.age); 

} 
} 
} 
Output 

101 Sonoo 23 
102 Ravi 21 
103 Hanumat 25 

Example of addAll(Collection c) method 
import java.util.*; 
class TestCollection4{ 
public static void main(String args[]){ 
ArrayList<String> al=new ArrayList<String>(); 
al.add("Ravi"); 
al.add("Vijay"); 
al.add("Ajay"); 
ArrayList<String> al2=new ArrayList<String>(); 
al2.add("Sonoo"); 
al2.add("Hanumat"); 
al.addAll(al2);//adding second list in first list 
Iterator itr=al.iterator(); 
while(itr.hasNext()){ 

System.out.println(itr.next()); 
} 
} 
} 
Output 

Ravi 
Vijay 
Ajay 
Sonoo 
Hanumat 

The other methods of ArrayList are also used such as removeAll() methodretainAll() method. 
System.out.println(itr.next()); 

} 

} 

} 

Output: 

Ravi 
Vijay 
Ravi 
Ajay 

2.9.STRINGS 



Rohini college of Engineering and technology 

33 
CS8392 Object Oriented Programming 

 

 

String is a collection of characters. 
Easiest way to represent a collection of characters in java is by using a character array. 

char chararray[]=new char[4]; 
chararray[0]=’J’; 
chararray[1]=’a’; 
chararray[2]=’v’; 
chararray[3]=’a’; 

In java,strings are class objects and implemented using two classes that is strings and stringbuffer. 
A java string is an instantiated object of the string class. 

String stringname; 
Stringname=new String("string”); 

Example 
String fname; 
firstname=new String("CSE”); 

String Arrays 
String items[]=new String[3]; 

String Methods 
The string class defines a number of methods that allow us to accomplish a variety of string 
manipulation task. _________________________________________________________________________________________  
String Methods Task Performed 
s2=s1.toLowercase; Converts the string si to all lowercase 
s2=s1.toUppercase; To all uppercase 
s2=s1.replace('x’,’y’); Replaces all appearances of x with y 
s2=s1.trim(); Remove white spaces at the beginning and end 

of string 
s1.equals(s2) Return true if si is equal to s2 
s1.length() Gives the length of si 
sl.charAt(n) Gives nth character of si 
s1.CompareTo(s2) Returns negative if si<s2,positive if si>s2 & zero 

if si is equal to s2.  
s1.concat(s2) Concatenate si and s2 
sl.substring(n) Gives substring starting from nth character 
s1.substring(n,m) Gives substring starting from nth character up to 

mth. 

sl.indexOf('x’) Gives the position of the first occurrence of ‘x’ in 
the string si. 

s1.indexOf('x’,n) Gives the position of ‘x’ that occurs after nth 

position in the string si. 
String.value O f(variable) Converts the parameter value to string 

representation.  

Example Program 
class Stringordering 

{ 
static stringname [] ={“Madrs”,”Delhi”,”Calcutta”,”Bombay”}; 



Rohini college of Engineering and technology 

34 
CS8392 Object Oriented Programming 

 

 

public static void main(String args[]) { 
int size=name.length; 
String temp=null; 
for(int i=0;i<size;i++) 

{ 
for(j=i+1;j<size;j++) 

{ 
if(name[j].compareTo(name[i])<0) 

{ 
temp=name[i]; 
name[i]=name[j]; 
name[j]=temp; 

} 
} 
} 
for (int i=0;i<size;i++) 

{ 
System.out.println(name[i]); 

} 
} } 
Output: 
Bombay 
Calcutta 
Delhi 
Madras 

String Buffer Class: 
String buffer creates strings of flexible length that can be modified 

Method Task 
s1.charAt(n,’x’) Modifies the nth character to x 
s1.append(s2) Appends the string s2 to si at the end 

s1.insert(n,s2) Inserts the string s2 at the position n of the  
 

string si 
sl.setLength(n) Sets the length of the string si to n.  

Manipulation of strings: Example 
class Stringmanipulation 

{ 
public static void main(String args[]) 

{ 
StringBuffer str=new StringBuffer("Object Language”); 
System.outprintin("Original String: ”+str); 
System.outprintln("Length of string”+str.length()); 
for(int i=0i<str.length();i++) 

{ 
int p=i+1; 
System.outprintln("character aat position”+p”is”+str.charAt()); 

} 
String astringnew String(str.toString()); 
int pos=astring.indexOf("language”); 



Rohini college of Engineering and technology 

35 
CS8392 Object Oriented Programming 

 

 

str.insert(pos,”oriented”); 
System.outprintln("Modified String”+str); 
str.setcharAt(6,’-‘); 
System.outprintin("String now”+str); 
str.append("improved security”); 
System.outprintln("appended string”+str); 

} 
} 

Output 
Original String: Object Language 
Character at Position : 1 is o 

Modified String : Object Oriented Language 
String now:Object -oriented language 
Appended String : Object-Oriented language improves security 

2 MARK QUESTIONS AND ANSWERS 

1. Define Inheritance. May/June 2012 
Inheritance can be defined as the process where one object acquires the properties of another. With the 
use of inheritance the information is made manageable in a hierarchical order.The resulting classes are 
known as derived classes, subclasses, or child classes. Older class is known as super class. 

2. What are the conditions to be satisfied while declaring abstract classes 
Java Abstract classes are used to declare common characteristics of subclasses. An abstract class cannot 
be instantiated. It can only be used as a superclass for other classes that extend the abstract class. 
Abstractclasses are declared with the abstract keyword. Abstract classes are used to provide a template 
or design for concrete subclasses down the inheritance tree. 

3. You can create an abstract class that contains only abstract methods. On the other hand, 
you can create an interface that declares the same methods. So can you use abstract classes 
instead of interfaces? 
Sometimes. But your class may be a descendent of another class and in this case the interface is your 
only option 

4. Explain the concept of Polymorphism. 
Polymorphism means when an entity behaves differently depending upon the context its being used. 
Moreover In other words Polymorphism is the capability of an action or method to do different things 
based on the object that it is acting upon. Means polymorphism allows you define one interface and 
have multiple implementations. That being one of the basic principles of object oriented programming. 

5. Explain about Virtual methods. 
A child class can override a method in its parent. An overridden method is essentially hidden in the 
parent class, and is not invoked unless the child class uses the super keyword within the overriding 
method. 

6. What is Static Binding? 
Connecting a method call(i.e. Function Call) to a method body(i.e. Function) is called binding. 



Rohini college of Engineering and technology 

36 
CS8392 Object Oriented Programming 

 

 

When binding is performed before the program is run (by the compiler and linker, if there is one), it’s 
called early binding or static Binding. 

7. What is Dynamic binding? 
The runtime system [JVM]during runtime determines the appropriate method call based on the class of 
the object. This feature is called as Polymorphism. All the methods in java are dynamically resolved. 
This cannot be determined by the Compiler. 

8. What is an Abstract classes and Methods? 
An abstract method is a method that is declared without an implementation (without braces, and 
followed by a semicolon), like this: 
abstract void moveTo(double deltaX, double deltaY); 
If a class includes abstract methods, the class itself must be declared abstract, as in: 
public abstract class GraphicObject { 
// declare fields 
// declare non-abstract methods abstract void draw(); 

} 
When an abstract class is subclassed, the subclass usually provides implementations for all of the 
abstract methods in its parent class. However, if it does not, the subclass must also be declared abstract. 

9. With example Explain Abstract Classes? 

 

First, you declare an abstract class, GraphicObject, to provide member variables and methods that are 
wholly shared by all subclasses, such as the current position and the moveTo method. GraphicObject also 
declares abstract methods for methods, such as draw or resize, that need to be implemented by all 
subclasses but must be implemented in different ways. 

10. When an Abstract Class Implements an Interface? 
It was noted that a class that implements an interface must implement all of the interface's methods. It 
is possible, however, to define a class that does not implement all of the interface methods, provided 
that the class is declared to be abstract. For example, abstract class X implements Y { 
// implements all but one method of Y 

} 

class XX extends X { 
// implements the remaining method in Y 

} 
In this case, class X must be abstract because it does not fully implement Y, but class XX does, in fact, 
implement Y. 

11. What is Object Class? 
The Object class defines the basic state and behavior that all objects must have, such as the ability to 
compare oneself to another object, to convert to a string, to wait on a condition variable, to notify other 
objects that a condition variable has changed, and to return the object's class. 



Rohini college of Engineering and technology 

37 
CS8392 Object Oriented Programming 

 

 

12. What is an interface (Nov/Dec 2011) 
An interface is a collection of method definitions (without implementations) and constant values. In 
Java, an interface is a reference data type and, as such, can be used in many of the same places where a 
type can be used (such as in method arguments and variable declarations) 

13. What are the uses of Interfaces?(Nov/Dec2010) 
• Capturing similarities between unrelated classes without forcing a class relationship. 
• Declaring methods that one or more classes are expected to implement. 
• Revealing an object's programming interface without revealing its class. (Objects such as these 

are called anonymous objects and can be useful when shipping a package of classes to other 
developers.) 

14. Why Interfaces Do not Provide Multiple Inheritances? 
• You cannot inherit variables from an interface. 
• You cannot inherit method implementations from an interface. 
• The interface hierarchy is independent of a class hierarchy--classes that implement the same 

interface may or may not be related through the class hierarchy. This is not true for multiple 
inheritances. 

15. What is meant by Reflection API? 
Reflection is commonly used by programs which require the ability to examine or modify the runtime 
behavior of applications running in the Java virtual machine. This is a relatively advanced feature and 
should be used only by developers who have a strong grasp of the fundamentals of the language. 

16. What are the uses of Reflection? 
Extensibility Features 
An application may make use of external, user-defined classes by creating instances of extensibility 
objects using their fully-qualified names. 
Class Browsers and Visual Development Environments 
A class browser needs to be able to enumerate the members of classes. Visual development 
environments can benefit from making use of type information available in reflection to aid the 
developer in writing correct code. 
Debuggers and Test Tools 
Debuggers need to be able to examine private members on classes. Test harnesses can make use of 
reflection to systematically call a discoverable set APIs defined on a class, to insure a high level of code 
coverage in a test suite. 

17. What are the Drawbacks of Reflection? 
Reflection is powerful, but should not be used indiscriminately. If it is possible to perform an operation 
without using reflection, then it is preferable to avoid using it. The following concerns should be kept 
in mind when accessing code via reflection. 

• Performance Overhead 

• Security Restrictions 

• Exposure of Internals 

18. What is object cloning in Java? (May/June 2013) 
Objects in Java are referred using reference types, and there is no direct way to copy the contents of an 
object into a new object. The assignment of one reference to another merely creates another reference 
to the same object. Therefore, a special clone() method exists for all reference types in order to provide 
a standard mechanism for an object to make a copy of itself. Here are the details you need to know about 



Rohini college of Engineering and technology 

38 
CS8392 Object Oriented Programming 

 

 

cloning Java objects. 

19. Define Inner classes. (Apr/May 2011) 
• An inner class is a class that is defined inside another class 
• Inner class methods can access the data from the scope in which they are defined including data 

that would otherwise be private. 
• Inner classes can be hidden from other classes in the same package. 
• 

20. What are the properties of proxy class ? 
• Proxy classes are created on the fly in the running program. 
• Once they are created they are just like any other class in the V.M. 
• All proxy classes extends the class proxy. 
• A proxy class as only one instant field. The innovation handles which is defined in the proxy 

super class. 

21. What is final modifier?(May/June 2013) 
The final modifier keyword makes that the programmer cannot change the value anymore. The actual 
meaning depends on whether it is applied to a class, a variable, or a method. 

final Classes- A final class cannot have subclasses. 
final Variables- A final variable cannot be changed once it is initialized. final Methods- A final 

method cannot be overridden by subclasses. 

PART B -13 MARK QUESTIONS 
1. Explain the concept of inheritance and its types. 
2. Explain the concept of overriding with examples. 
3. What is dynamic binding? Explain with example. 
4. Explain the uses of reflection with examples. 
5. Define an interface. Explain with example. 
6. Explain the methods under “object” class and "class” class. 
7. What is object cloning? Explain deep copy and shallow copy with examples. 
8. Explain static nested class and inner class with examples. 
9. With an example explain proxies. 
10. Develop a message abstract class which contains playMessage abstract method. Write a different 
sub-classes like TextMessage, VoiceMessage and FaxMessage classes for to implementing the 
playMessage method. 
11. Develop a abstract Reservation class which has Reserve abstract method. Implement the sub-
classes like ReserveTrain and ReserveBus classes and implement the same. 
12. Develop an Interest interface which contains simpleInterest and compInterest methods and static 
final field of Rate 25%. Write a class to implement those methods. 
13. Develop a Library interface which has drawbook(), returnbook() (with fine), checkstatus() and 
reservebook() methods. All the methods tagged with public. 
14. Develop an Employee class which implements the Comparable and Cloneable interfaces. 
Implement the sorting of persons (based on name in alphabetical). Also implement the shallow copy 
(for name and age) and deep copy (for DateOfJoining). 
15. Explain the different methods supported in Object class with example. 

Part-C 15 MARK QUESTIONS 
1. Develop a static Inner class called Pair which has MinMax method for finding min and max values 
from the array. 
2. Explain the following with examples(NOV/DEC 2010) 



Rohini college of Engineering and technology 

39 
CS8392 Object Oriented Programming 

 

 

i. The clone able interface(8) 
ii. The property interface. (7) 

3 .Develop an application using inheritance and interfaces 
4 .Develop a book application and apply various string operations to find particular string. 
5 .With the help of real time application explain object cloning in java. 


