5.3 Design Of Industrial Gantry Girders

Example 3

Design a hand operated travelling crane simply supported by gantry girder for the given data:

Span of gantry girder	$=5 \mathrm{~m}$
Span of crane girder	$=15 \mathrm{~m}$
Crane capacity	$=200 \mathrm{KN}$
Self weight of crane girder excluding tro	
Self weight of trolley	$=30 \mathrm{KN}$
Minimum hook approach	$=1 \mathrm{~m}$
Distance between wheels	$=3.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$
Self weight of rails	$=0.3 \mathrm{KN} / \mathrm{m}$

Solution:

Step : 1 For calculating maximum moment
(a) Weight of trolley + load lifted by crane

$$
\begin{aligned}
& =30+200 \\
& =230 \mathrm{KN}
\end{aligned}
$$

(b) Self weight of crane girder

$$
=200 \mathrm{KN}
$$

For maximum reaction on gantry girder, the moving load should be placed close to Gantry girder .

$\sum \mathrm{M}_{\mathrm{B}}=0 \mathrm{ie}$) taking moment of all forces about B

$$
\begin{aligned}
\mathrm{R}_{\mathrm{A}} \times 15-230 \mathrm{X} 7.5 & =0 \\
\mathrm{R}_{\mathrm{A}} & =4720 / 15 \\
& =314.67 \mathrm{KN}
\end{aligned}
$$

This load is transferred to gantry girder through two wheels base which are at $3.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$.
\therefore Load on gantry from each wheel

$$
\begin{aligned}
& =314.67 / 2 \\
& =157.33 \mathrm{KN} \\
\text { Factored wheel load } & =157.33 \times 1.5 \\
& =236.00 \mathrm{KN}
\end{aligned}
$$

The maximum moment due to moving loads occur under a wheel when the C.G (Center of gravity)

Wheel load and the wheel are equidistance from the center of girder.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{B}} \quad & =[236 \mathrm{X} 0.75+236 \times(2.5+0.875)] / 5 \\
& =194.7 \mathrm{kN}
\end{aligned}
$$

Maximum moment at $\mathrm{E} \quad=194.7 \times 1.625$ (from support B)

$$
=316.38 \mathrm{KNm}
$$

Moment due to impact $=20 \%$ of max moment

$$
\begin{aligned}
& =0.2 \times 316.38 \\
& =63.277 \mathrm{KNm}
\end{aligned}
$$

Assume self weight of girder $=2 \mathrm{KN} / \mathrm{m}$
\therefore Dead load due to self weight + rails(given)

$$
\begin{aligned}
& =2+0.3 \\
& =2.3 \mathrm{KN} / \mathrm{m} \\
& =2.3 \times 1.5 \\
& =3.45 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

$$
\text { Factored dead load } \quad=2.3 \times 1.5
$$

Moment due to dead load $=\mathrm{WL}^{\wedge} 2 / 8$

$$
\begin{aligned}
& =3.45 \times 5^{\wedge} 2 / 8 \\
& =10.781 \mathrm{kNm}
\end{aligned}
$$

\therefore Factored moment due to vertical load $\left(\mathrm{M}_{\mathrm{z}}\right)$

$$
\begin{aligned}
& =10.781+63.277+316.38 \\
& =390.438 \mathrm{kNm}
\end{aligned}
$$

Maximum moment due to horizontal force,
Horizontal force transverse to rails $=10 \%$ of weight of trolley + load lifted

$$
\begin{aligned}
& =10 / 100(200+30) \\
& =23 \mathrm{KN}
\end{aligned}
$$

Assuming double framed wheels, this is distributed over 4 wheels.
\therefore Horizontal force on each wheel $=23 / 4$
$=5.75 \mathrm{kN}$

Factored horizontal force on each wheel

$$
\begin{aligned}
& =1.5 \times 5.75 \\
& =8.625 \mathrm{Kn}
\end{aligned}
$$

For max bending moment in gantry the position of loads is same except in horizontal,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{Y}} & =8.625 / 236 \times 316.38 \\
& =11.56 \mathrm{kNm}
\end{aligned}
$$

Step 2Shear force
For max shear force on the girder the trailing wheel should be just on the girder.

$\begin{aligned} \therefore \text { Vertical shear due to wheel loads } & =236+236 \times 1.5 / 5 \\ & =306.8 \mathrm{KN} \\ \text { Vertical shear due to impact } & =0.2 \times 306.8 \\ & =61.36 \mathrm{kN} \\ \text { Vertical shear due to self weight } & =\mathrm{WL} / 2 \\ & =3.45 \mathrm{X} 5 / 2 \\ & =8.625 \mathrm{kN}\end{aligned}$

$$
\begin{aligned}
\text { Total vertical shear } & =306.8+61.36+8.625 \\
& =376.785 \mathrm{KN}
\end{aligned}
$$

By proportioning lateral shear due to surge

$$
\begin{aligned}
& =(8.625 / 236) \times 306.8 \\
& =11.21 \mathrm{kN}
\end{aligned}
$$

Step 3 Selection of section
(i) Economic depth of section $=\mathrm{L} / 12$

$$
\begin{aligned}
& =5000 / 12 \\
& =416 \mathrm{~mm} \approx 500 \mathrm{~mm}
\end{aligned}
$$

(ii) Compression flange width $=\mathrm{L} / 25$
$=5000 / 25$
$=200 \mathrm{~mm}$
Let us try ISWB 500 with ISMC 300 on compression flange,

Properties of ISWB $500 @ 9.52 \mathrm{~N} / \mathrm{m}$

$$
\begin{array}{lrl}
\text { es of ISWB } 500 @ 9.52 \mathrm{~N} / \mathrm{m} & & \text { Properties of ISMC } 300 \\
\mathrm{~A}=12,122 \mathrm{~mm}^{\wedge} 2 & \mathrm{~A} & =4564 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{~h}=500 \mathrm{~mm} & \mathrm{~h} & =300 \mathrm{~mm} \\
\mathrm{~b}_{\mathrm{f}}=250 \mathrm{~mm} & \mathrm{~b}_{\mathrm{f}} & =90 \mathrm{~mm} \\
\mathrm{t}_{\mathrm{f}}=14.7 \mathrm{~mm} & \mathrm{t}_{\mathrm{f}} & =13.6 \mathrm{~mm} \\
\mathrm{t}_{\mathrm{w}}=9.9 \mathrm{~mm} & \mathrm{t}_{\mathrm{w}} & =7.6 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{zz}}=522.90 \times 10^{\wedge} 6 \mathrm{~mm}^{\wedge} 4 & \mathrm{I}_{\mathrm{zz}} & =6362.6 \times 10^{\wedge} 4 \mathrm{~mm}^{\wedge} 4 \\
\mathrm{I}_{\mathrm{yy}}=29.878 \times 10^{\wedge} 6 \mathrm{~mm}^{\wedge} 4 & \mathrm{I}_{\mathrm{yy}} & =310.8 \times 10^{\wedge} 4 \mathrm{~mm}^{\wedge 4} \\
& \mathrm{C}_{\mathrm{yy}} & =23.6 \mathrm{~mm}
\end{array}
$$

To find N.A of the section from bottom flange (tension)

$$
\begin{aligned}
\overline{\mathrm{Y}}= & {[12122 \times 250+4564 \mathrm{x}(500+7.6-23.6)] /(12122+4564) } \\
\overline{\mathrm{Y}}= & 314.00 \mathrm{~mm}(\text { from bottom flange }) \\
\mathrm{I}_{\mathrm{zz}} & =522.90 \times 10^{\wedge} 6+12122(314-250)^{\wedge} 2+310.8 \times 10^{\wedge 4}+ \\
& 4564(484-314)^{\wedge} 2 \\
= & 1.015 \times 10^{\wedge} 9 \mathrm{~mm}^{\wedge 4} \\
\mathrm{Z}_{\mathrm{e}} \quad= & \mathrm{I}_{z z} / \mathrm{y} \\
= & 1.015 \times 10^{\wedge 9 / 314} \\
= & 3.233 \times 10^{\wedge} 6 \mathrm{~mm}^{\wedge} 3
\end{aligned}
$$

For compression flange about yy axis,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{yy}} & =14.7 \times 250^{\wedge} 3 / 12+6362.6 \times 10^{\wedge} 4 \\
& =82.766 \times 10^{\wedge} 6 \mathrm{~mm}^{\wedge} 4
\end{aligned}
$$

Z_{ey} for compression flange $=82.766 \times 10^{\wedge} 6 / 150$

$$
=551.77 \times 10^{\wedge} 3 \mathrm{~mm}^{\wedge} 3
$$

Now, plastic modulus of section

$$
\begin{aligned}
\text { Total area of the section } & =12122+4564 \\
& =16686 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Let plastic N.A be a distance Y_{p} from bottom flange,

$$
\begin{aligned}
\therefore\left(\mathrm{Y}_{\mathrm{p}}-14.7\right) \times 9.9+250 \times 14.7 & =\mathrm{A} / 2 \\
9.9 \mathrm{Y}_{\mathrm{p}}-145.53+3675 & =16686 / 2 \\
\mathrm{Y}_{\mathrm{p}} & =4813.53 / 9.9 \\
& =486.21 \mathrm{~mm}
\end{aligned}
$$

Plastic moment capacity of section $\mathrm{M}_{\mathrm{p}}=\sum$ Moment of forces at yield about plastic N.A

$$
\begin{aligned}
\mathrm{M}_{\mathrm{p}}= & 147 \times 250[486.21-14.7 / 2] \mathrm{x} \text { fy }+[(486.21- \\
& 14.7) / 2] \times 9.9 \mathrm{fy}+\left[(500-14.7-486.21)^{\wedge} 2 / 2\right] \times 9.9 \mathrm{fy} \\
+ & 14.7 \times 250[500-(14.7 / 2)-486.21] \mathrm{fy}+4564(500+13.6- \\
& 23.6-486.21) \mathrm{fy} \\
= & 1.75 \times 10^{\wedge} 6 \mathrm{fy}+2.34 \times 10^{\wedge} 3 \mathrm{fy}+23.66 \times 10^{\wedge} 3 \mathrm{fy}+ \\
& 17.29 \times 10^{\wedge} 3 \mathrm{fy} \\
= & 1.793 \times 10^{\wedge} 6 \mathrm{fy} \\
= & \mathrm{Mp} / \mathrm{fy} \\
=\mathrm{Zp}= & 1.793 \times 10^{\wedge} 6 \mathrm{~mm} \wedge 3
\end{aligned}
$$

For top flange,

$$
\begin{aligned}
Z p y= & \text { Mp/fy }=1 / 4 \times 14.7 \times 250^{\wedge} 2+1 / 4(300-2 \times 13.6)^{\wedge} 2 \times 7.6 \\
& +2 \times 90 \times 13.6[150-13.6 / 2]
\end{aligned}
$$

$$
\begin{aligned}
& =229.68 \times 10^{\wedge} 3+141.39 \times 10^{\wedge} 3+350.55 \times 10^{\wedge} 3 \\
& =721.62 \times 10^{\wedge} 3 \mathrm{~mm}^{\wedge} 3
\end{aligned}
$$

Check for moment capacity,
b / t of flange of ISWB $500=(250-9.9) /(2 \times 14.7)$

$$
=8.16<8.4 \epsilon
$$

d / t of web of ISWB $500=(500-2 \times 14.7) / 9.9$

$$
=47.53<84 \mathrm{e}
$$

b/t of flange of channel section ISMC 300

$$
\begin{aligned}
& =(90-7.6) / 13.6 \\
& =6.06<8.4 \epsilon
\end{aligned}
$$

\therefore The section is plastic.
Local moment capacity for bending in vertical plane,

$$
\begin{aligned}
\mathrm{Md}_{z} & =(\text { fy } . \mathrm{Zp}) / 1.1 \\
& =250 \times 1.793 \times 10^{\wedge} 6 / 1.1 \\
& =407.5 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =407.5 \mathrm{kNm} \\
1.2 \times \mathrm{Ze} \text { fy } / 1.1 \quad & =1.2 \times 5.233 \times 10^{\wedge} 6 \times 250 / 1.1 \\
& =881.72 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =881.721 \mathrm{kNm}
\end{aligned}
$$

Lesser of two values $\mathrm{Md}_{\mathrm{z}} \quad=407.5 \mathrm{kNm}$

$$
\text { For top flange, } \begin{aligned}
\mathrm{Md}_{\mathrm{z}} & =\mathrm{fy} . \mathrm{Zp} / 1.1 \\
& =\left(250 \times 721.62 \times 10^{\wedge} 3\right) / 1.1 \\
& =\mathrm{Md}_{\mathrm{y}}
\end{aligned}
$$

$$
\begin{aligned}
& =164 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =164 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
1.2 \times \mathrm{Z}_{\mathrm{e}} . \mathrm{fy} / 1.1 & =\left(1.2 \times 551.77 \times 10^{\wedge} 3 \times 250\right) / 1.1 \\
& =150.48 \mathrm{kNm}
\end{aligned}
$$

\therefore For top flange, $\mathrm{Md}_{\mathrm{z}} \quad=150.48 \mathrm{kNm}$

$$
=\mathrm{Md}_{\mathrm{y}}
$$

Check for combined local capacity,

$$
\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{dz}}+\mathrm{My} / \mathrm{M}_{\mathrm{dy}} \leq 1
$$

$390.438 / 407.5+11.56 / 150.48=0.95+0.076$

$$
=1.02 \approx 1
$$

\because Section is adequate and economic

Check for buckling resistance,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{d}} & =\beta_{\mathrm{b}} \cdot \mathrm{Z}_{\mathrm{p}} \cdot \mathrm{f}_{\mathrm{bd}} \\
\beta b & =1 \text { (for plastic section) } \\
\mathrm{f}_{\mathrm{cr}, \mathrm{~b}} & =1.1 \pi^{\wedge} 2 \mathrm{E} /\left(\mathrm{L}_{\mathrm{LT}} / \mathrm{r}_{\mathrm{y}}\right)^{\wedge} 2\left[1+1 / 20\left[\left(\mathrm{~L}_{\mathrm{LT}} / \mathrm{r}_{\mathrm{y}}\right) /\left(\mathrm{h}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}}\right)\right]^{\wedge} 2\right]^{\wedge} 0.5 \\
\mathrm{~L}_{\mathrm{LT}} & =5.0 \mathrm{~m} \\
& =5000 \mathrm{~mm} \\
\mathrm{E} & =2 \times 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \\
\mathrm{~h}_{\mathrm{f}} & =500+7.6 \\
& =507.6 \mathrm{~mm} \\
\mathrm{t}_{\mathrm{f}} & =14.7 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{yy}} \quad & =29.878 \times 10^{\wedge} 6+6362.6 \times 10^{\wedge} 4 \\
& =93.50 \times 10^{\wedge} 6 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}= & 12122+4564 \\
= & 16686 \mathrm{~mm}^{\wedge} 2 \\
\therefore \mathrm{r}_{\mathrm{y}} \quad & \sqrt{ }\left(\mathrm{I}_{\mathrm{yy}} / \mathrm{A}\right) \\
= & \sqrt{ }\left(93.5 \times 10^{\wedge} 6\right) / 16.686 \\
= & 74.85 \mathrm{~mm} \\
= & \left(1.1 \mathrm{x} \pi^{\wedge} 2 \times 10^{\wedge} 5\right) /(5000 / 74.85)^{\wedge} 2\{1+1 / 20 \\
& {\left.[(5000 / 74.85) /(507.6 / 14.7)]^{\wedge} 2\right\}^{\wedge} 0.5 } \\
\mathrm{f}_{\mathrm{cr}, \mathrm{~b}} & \\
= & 486.59\left[1+1 / 20(66.80 / 34.53)^{\wedge} 2\right]^{\wedge} 0.5 \\
= & 530.165 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

IS code:800-2007, clause 8.2.2

$$
\begin{aligned}
\text { For } \mathrm{f}_{\mathrm{cr}, \mathrm{~b}} & =530.16 \\
: \mathrm{f}_{\mathrm{bd}} & =191.34 \mathrm{~N} / \mathrm{mm}^{\wedge} 2(\text { by linear interpolation }) \\
: \mathrm{M}_{\mathrm{dz}} & =1.0 \times 191.34 \times 1.793 \times 10^{\wedge} 6 \\
& =343.07 \times 10^{\wedge} 6 \mathrm{Nmm}<407.5 \times 10^{\wedge} 6
\end{aligned}
$$

Check for biaxial bending,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{dy}} & =\mathrm{fy} . \mathrm{Zy} / 1.1 \\
\mathrm{Z}_{\mathrm{y}} & =\mathrm{Iyy} / 150 \\
& =93.50 \times 10^{\wedge} 6 / 150 \\
& =623.33 \times 10^{\wedge} 3 \mathrm{~mm}^{\wedge} 3 \\
\mathrm{M}_{\mathrm{dy}} & =250 \times 623.33 \times 10^{\wedge} 3 / 1.1 \\
& =141.67 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =141.67 \mathrm{kNm}
\end{aligned}
$$

$$
\because \mathrm{Mz} / \mathrm{Mdz}+\mathrm{My} / \mathrm{Mdy} \leq 1
$$

$$
390.43 / 407.5+11.56 / 141.67=1.03=1
$$

Check for deflection,
At working load, deflection is limited to L/750

Maximum deflection occurs at midspan $=$ moment of M / EI load in conjugate beam

$$
\begin{aligned}
\text { Reaction in conjugate beam } & =1 / 2 \times \text { total M/EI diagram } \\
& =1 / 2 \times 0.75 \times 118 / \mathrm{EI}+118 / \mathrm{EI} \times 5 / 2 \\
& =339.25 / \mathrm{EI}
\end{aligned}
$$

$$
\begin{aligned}
\text { EI } \Delta & =339.25 \mathrm{X} 5 / 2-1 / 2 \mathrm{X} 118 \mathrm{X} 0.75 \mathrm{X} 2-1 / 2 \times 3.5 \times 118 \times 1.75 / 2 \\
& =848.125-88.8-180.68 \\
& =578.94 \\
& =\left(2 \times 10^{\wedge} 5 \times 1.015 \times 10^{\wedge} 9\right) /(1000 \times 1000 \times 1000) \\
& =203 \times 10^{\wedge} 3 \mathrm{kNm}^{\wedge} 2 \\
\Delta & =578.94 / 203 \times 10^{\wedge} 3 \\
& =2.85 \times 10^{\wedge}-3 \mathrm{~m} \\
& =2.85 \mathrm{~mm}
\end{aligned}
$$

Permissible deflection $\Delta=\mathrm{L} / 750$
$=5000 / 750$
$=6.67 \mathrm{~mm}$
\therefore Deflection requirement is satisfied

Hence, ISWB 500 with ISMC 300 can be suitable for gantry girder.

