Power Flow under Steady State:-

Consider a short transmission line with negligible resistance.

 V_S = per phase sending end voltage V_R = per phase receiving end voltage V_s leads V_R by an angle

x = reactance of per transmission line

(Fig.3-A short transmission line)

On the per phase basis power on sending end,

$$S_S = P_S + j Q_S = V_S I^*$$
 (29)

From Fig.3 I is given as

or
$$I = \frac{V_S - V_R}{jx}$$

$$I^* = \frac{V_S^* - V_R^*}{-jx}$$
(30)

From equation (29) and (30), we get

$$S_{S} = \frac{VS(VS^{*} - V_{R}^{*})}{-jx}$$
 (31)

Now

$$V_R = |V_R| L0^0 \text{ so, } V_R = V_R^* = |V_R|$$

$$V_S = |V_S|L\delta = |V_S|e^{j\delta}$$

Equation (31) becomes

$$S_{S} = P_{S} + jQ_{S} = \frac{|V_{S}||V_{R}|}{x} \sin \delta + \frac{1}{x} (|\cdot|_{S}^{2} - |\cdot|_{S}^{2} |\cdot|_{S} \delta)$$

$$S_{O} P_{S} = \frac{|V_{S}||V_{R}|}{x} \sin \delta. \tag{32}$$

and

$$Q_{s} = \frac{|V_{s}|^{2} - |V_{S}||V_{R}|\cos\delta}{x}$$
(33)

Similarly, at the receiving end we have

$$S_R = P_R + j Q_R = V_R I^*$$
....(34)

Proceeding as above we finally obtain

$$Q_{R} = \frac{|V_{S}||V_{R}|\cos\delta - |V_{R}|^{2}}{x}$$

$$P_{R} = \frac{|V_{S}||V_{R}|}{x}\sin\delta.$$
(35)

$$P_{R} = \frac{|V_{S}||V_{R}|}{x} \sin \delta. \tag{36}$$

Therefore for lossless transmission line,

$$P_{S} = P_{R} = \frac{|V_{S}||V_{R}|}{x} \sin \delta...$$
 (37)

In a similar manner, the equation for steady-state power delivered by a lossless synchronous machine is given by

$$P_{e} = P_{d} = \frac{|E_{g}||V_{t}|}{x_{d}} \sin \delta$$

$$= P_{\text{max}} \sin \delta....(38)$$

Where $|E_g|$ is the rms internal voltage, $|V_t|$ is the rms terminal voltage, x_d is the direct axis reactance (or the synchronous reactance in a round rotor machine) and is the electrical power angle.

Steady-state Stability:-

The steady state stability limit of a particular circuit of a power system defined as the maximum power that can be transmitted to the receiving end without loss of synchronism.

Now consider equation (18),

$$M_{(pu)} \cdot \frac{d^2 \delta}{dt^2} \approx (P_i - P_j).....(39)$$
Where
$$M_{(pu)} = \frac{H}{\pi f}$$
And
$$P_e = \frac{|E_g||V_t|}{x_d} \sin \delta = P_{\max} \sin \delta....(40)$$

Let the system be operating with steady power transfer of $P_{e0} = P_i$ with torque angle δ_0 . Assume a small increment P in the electric power with the input from the prime mover remaining fixed at P_i causing the torque angle to change to $(\delta_0 + \Delta \delta)$. Linearizing the operating point (P_{e0}, δ_0) we can write

$$\Delta P_e = \left(\frac{6P_e}{60}\right)_0 \Delta \delta. \tag{41}$$

The excursions of $\Delta\delta$ are then described by

or
$$M\frac{d^{2}\Delta\delta}{dt^{2}} = P_{i} - (P_{e0} + \Delta P_{e}) = -\Delta P_{e}$$
(42)
$$M\frac{d^{2}\Delta\delta}{dt^{2}} + \frac{6P_{e}}{6\delta} \Delta \delta = 0$$
(43)
or
$$[Mp^{2} + (\frac{6P_{e}}{6\delta})_{0}]\Delta \delta = 0$$
(44)
Where
$$p = \frac{d}{dt}$$

The system stability to small changes is determined from the characteristic equation

$$Mp^2 + (\frac{6P_e}{6\delta})_0 = 0...$$
 (45)

Where two roots are

$$p = \pm \left[\frac{-\binom{6P_e}{6\eth 0}}{M}\right]^{\frac{1}{2}}....$$
 (46)

As long as $\binom{\partial P_e}{\partial \delta}_0$ is positive, the roots are purely imaginary and conjugate and system behavior is oscillatory about δ_0 . Line resistance and damper windings of machine cause the system oscillations to decay. The system is therefore stable for a small increment in power so long as $\binom{\partial P_e}{\partial \delta}_0 > 0$.

When $({}^{\partial P_e}/_{\partial \delta})_0$ is negative, the roots are real, one positive and the other negative but of equal magnitude. The torque angle therefore increases without bound upon occurrence of a small power increment and the synchronism is soon lost. The system is therefore unstable for $({}^{\partial P_e}/_{\partial \delta})_0 < 0$.

 $({}^{\partial P_e}/_{\partial \mathcal{E}})_0$ is known as **synchronizing coefficient**. This is also called **stiffness** of synchronous machine. It is denoted as S_p . This coefficient is given by

$$_{p} = \frac{6P_{e}}{6\delta} |_{\delta = \delta_{0}} = P_{\text{max}} \quad s \, \delta_{0} \quad \dots \tag{47}$$

If we include damping term in swing equation then equation (43) becomes

or
$$\frac{d^{2}\Delta\delta}{dt^{2}} + D\frac{d\Delta\delta}{dt} + \left[\frac{6P_{e}}{6\delta}\right]_{0}^{\Delta\delta} = 0$$
or
$$\frac{d^{2}\Delta\delta}{dt^{2}} + \frac{D}{M}\frac{d\Delta\delta}{dt} + \frac{1}{M}\left[\frac{6P_{e}}{6\delta}\right]_{0}^{\Delta\delta} = 0$$
or
$$\frac{d^{2}\Delta\delta}{dt^{2}} + \frac{D\pi f}{H}\frac{d\Delta\delta}{dt} + \frac{S_{p}\pi f}{H}\Delta\delta = 0$$
or
$$\frac{d^{2}\Delta\delta}{dt^{2}} + 2\frac{d\Delta\delta}{dt} + \frac{2}{n}\Delta\delta = 0 \qquad (48)$$

Where
$$m_{n} = \sqrt{\frac{fS_{p}}{H}} \text{ and } r = \frac{D}{2} \sqrt{\frac{f}{HS_{p}}}$$
 (49)

So damped frequency of oscillation,
$$m_d = m_n \sqrt{1 - r^2}$$
(50)

And Time Constant,
$$T = \frac{1}{c\omega_n} = \frac{2H}{\pi f D}$$
 (51)

Example2:-

Find the maximum steady-state power capability of a system consisting of a generator equivalent reactance of 0.4pu connected to an infinite bus through a series reactance of 1.0 p.u. The terminal voltage of the generator is held at 1.10 p.u. and the voltage of the infinite bus is 1.0 p.u.

Solution:-

Equivalent circuit of the system is shown in Fig.4.

(Fig.4 Equivalent circuit of example2)

$$|E_g|L\delta = t + jx_d$$
 (i)

$$I = \frac{V_t - V}{jx} = \frac{1.1L\theta - 1L0^{\circ}}{j1}$$
 (ii)

Using equation (i) and (ii)

$$|E_{g}|L\delta = 1.1L\theta + j0.4(\frac{1.1L\theta - 1L0^{\circ}}{j1})$$

$$\therefore |E_g|L\delta = 1.1\cos\theta + j1.1\sin\theta + 0.4x1.1L\theta - 0.4$$

$$E_g | L\delta = (1.4 \cos \theta - 0.4) + j1.4 \sin \theta$$
(iii)

Maximum steady-state power capability is reached when $\delta=90^{\circ}\!,$ i.e., real part of equation is zero. Thus

$$1.54 \cos \theta - 0.4 = 0$$

$$\therefore \theta = 74.9^{\circ}$$

$$\therefore |E_g| = 1.54 \sin 74.9^{\circ} = 1.486 \text{ pu.}$$

$$\therefore V_t = 1.1L74.9^{\circ}$$

$$|E_g||V| = 1.48x1.0$$

$$(x_d)$$

$$OBSERVE OPTIMIZE OUTSPREAD$$