1.4 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY STRAIN ENERGY METHOD

(PLANE FRAMES)

Let a statically indeterminate structure has degree of indeterminacy as n. On the selected basic determinate structure apply the unknown forces $R_{1}, R_{2} \ldots$. and R_{n}. Using the Eq. (4.16) the displacement Δ_{j} in the direction of R_{j} is expressed by

$$
\begin{aligned}
& \Delta_{j}=\frac{\partial U}{\partial R_{j}} \\
& (j=1,2, \ldots \ldots . n)(5.1)
\end{aligned}
$$

The equations (5.1) will provide the n linear simultaneous equations with n unknowns $R_{1}, R_{2} \ldots$. . and R_{n}. Since the Δ_{j} is known, therefore, the solution of simultaneous equations will provide the desired $R_{j}(j=1,2, \ldots, n)$.

For structures with members subjected to the axial forces only (i.e. pinjointed structures), the equation (5.1) is re-written as

$$
\begin{equation*}
\Delta_{j}=\frac{\partial}{\partial R_{j}} \sum\left(\frac{P^{2} L}{2 A E}\right)=\sum\left(\frac{P \frac{\partial P}{\partial R_{j}} L}{A E}\right) \tag{5.2}
\end{equation*}
$$

Where;
P is the force in the member due to applied loading and unknown $R_{j}(j=1,2, \ldots, n)$; and L and $A E$ are length and axial rigidity of the member, respectively.

For structures with members subjected to the bending moments (i.e. beams and rigidjointed frames), the equation (5.1) is re-written as

$$
\begin{equation*}
\Delta_{j}=\frac{\partial}{\partial R_{j}}\left(\int \frac{M I^{2} d x}{2 E I}\right)=\int \frac{M \frac{\partial M I}{\partial R_{j}} d x}{E I} \tag{5.3}
\end{equation*}
$$

where;
M is the bending moment due to applied loading and unknown
$R_{j}(j=1,2, \ldots, n)$ at a small element of length $d x$; and EI is the flexural rigidity.

Problem No: 1

Determine the force in various members of the pin-jointed frame shown in Figure 5.20(a).Length and AE is constant for all members.

Figure 5.20(a)

Figure 5.20(b)

Solution:

The static indeterminacy of the pin-jointed frame is $=12+3-7 \times 2=1$. Let the force in the member BG be R as shown in Figure 5.20(b). According to the Castigliano's theorem

$$
\frac{\partial U}{\partial R}=0
$$

The computation of $\partial U / \partial R$ is made in Table 5.6.

$$
\begin{gathered}
\frac{\partial U}{\partial R}=\frac{1}{A E}\left(P \frac{\partial P}{\partial R} L\right)=0 \\
\frac{1}{A E}(24 R-1920)=0
\end{gathered}
$$

The final force in various members of the frame is shown in Table 5.6

Member	Length, $L(m)$	P	$\frac{\partial P}{\partial R}$	$P \frac{\partial P}{\partial R} L$	Final force (kN)
$A B$	2	$-120+R$	1	$\begin{aligned} & 2 R- \\ & 240 \end{aligned}$	-40
$A G$	2	$120-R$	-1	$\begin{aligned} & 2 R- \\ & 240 \end{aligned}$	40
$A F$	2	$-60+R$	1	$\begin{aligned} & 2 R- \\ & 120 \\ & \hline \end{aligned}$	20
BC	2	$-120+R$	1	$\begin{aligned} & \hline 2 R- \\ & 240 \end{aligned}$	-40
$B G$	2	-R	-1	$2 R$	-80
$C D$	2	$-120+R$	1	$\begin{aligned} & 2 R- \\ & 240 \end{aligned}$	-40
$C G$	2	$120-R$	-1	$\begin{aligned} & 2 R- \\ & 240 \end{aligned}$	40
$D E$	2	$-60+R$	-1	$\begin{aligned} & 2 R- \\ & 120 \end{aligned}$	20
$D G$	2	$60-R$	-1	$\begin{aligned} & 2 R- \\ & 120 \end{aligned}$	-20
EF	2	$-60+R$	1	$\begin{aligned} & 2 R- \\ & 120 \\ & \hline \end{aligned}$	20
$E G$	2	$60-R$	-1	$\begin{aligned} & 2 R- \\ & 120 \end{aligned}$	-20
$F G$	2	$60-R$	-1	$\begin{aligned} & 2 R- \\ & 120 \end{aligned}$	-20

$\sum \quad 24 R-1920$

$$
\begin{gathered}
\frac{\partial U}{\partial R}=\frac{1}{A E}\left(P \frac{\partial P}{\partial R} L\right)=0 \\
\frac{1}{A E}(24 R-1920)=0
\end{gathered}
$$

$$
\therefore \quad R=80 \mathrm{kN}
$$

The final force in various members of the frame is shown in Table 5.6.

Problem No: 2

Determine the force in various members of the pin-jointed frame as shown in Figure 5.21(a), if the member $B C$ is short by an amount of Δ. All members of the frame have same axial rigidity as AE.

Figure 5.21(a)

Figure 5.21 (b)

Solution:

The static indeterminacy of the pin-jointed frame is $=5+4-2 \times 4=1$. Since the member BC is short by an amount of Δ, therefore, apply a force R in the member BC such that displacement in the direction of R is Δ. Thus, according to the Castigliano's theorem.

$$
\frac{\partial U}{\partial R}=\Delta
$$

The computation of $\partial U / \partial R$ is made in Table 5.7.
Table 5.7

Member	Length, $L(m)$	F	$\frac{\partial F}{\partial R}$	$F \frac{\partial F}{\partial R} L$	Final force
$A B$	L	R	1	$R L$	1
$A C$	$\sqrt{2} L$	$-\sqrt{2} R$	$-\sqrt{2}$	$2 \sqrt{2} R L$	$-\sqrt{2}$
$B C$	L	R	1	$R L$	1
$B D$	L	$-\sqrt{2} R$	$-\sqrt{2}$	$2 \sqrt{2} R L$	$-\sqrt{2}$
$C D$	$\sqrt{2} L$	R	1	$R L$	

$$
\begin{aligned}
& \sum\left(\frac{A E \Delta}{(3+4 \sqrt{2}) L}\right) \\
& (3+4 \sqrt{2}) R L
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\partial U}{\partial R}=\frac{1}{A E}\left(F \frac{\partial F}{\partial R} L\right)=\Delta \\
& \frac{1}{A E}(3+4 \sqrt{2}) R L=\Delta \\
& R=\frac{A E \Delta}{(3+4 \sqrt{2}) Z}
\end{aligned}
$$

The final force in various members of the frame is shown in Table 5.7.

Problem No:3

Determine the horizontal reaction of the portal frame shown in Figure 5.22(a) by energy method. Also, calculate the horizontal reaction when the member BC is subjected to distributed load, w over entire length.

Figure 5.22 (a)-(b)

Solution:

Static indeterminacy of the frame $=1$.
Let the horizontal reaction, H at D be the redundant. The reaction at A and D are

$$
H_{A}=H ; \quad H_{D}=H \quad R_{A}=P b / L \quad \text { and } R_{D}=P a / L
$$

For the span AB (x measured from A),

$$
\begin{gathered}
M_{x}=H x \quad \text { and } \frac{\partial M_{x}}{\partial H}=x \\
\frac{\partial U_{A B}}{\partial H}=\frac{H h^{3}}{3 E I}
\end{gathered}
$$

For the span BE (x measured from B),

$$
\begin{aligned}
M_{x}= & H h_{1}-\frac{P b}{L} x \quad \text { and } \frac{\partial M_{x}}{\partial H}=h \\
& \frac{\partial U_{B E}}{\partial H}=\frac{1}{E I} \int_{0}^{a}\left[H h-\frac{P b}{L} x\right] h d x=\frac{H h^{2} a}{E I}-\frac{P a^{2} b h}{2 E I L}
\end{aligned}
$$

For the span CD (X Measured from D), $\quad M_{x}=H x \quad$ and $\frac{\partial M_{x}}{\partial H}=x$

$$
\frac{\partial U_{C D}}{\partial H}=\frac{H h^{3}}{3 E I}
$$

For the span CE (x measured from C),

$$
\begin{gathered}
M_{x}=H h-\frac{P a}{L} x \quad \text { and } \frac{\partial M_{x}}{\partial H}=h \\
\frac{\partial U}{\partial H}=0 \quad \begin{array}{c}
\frac{\partial U_{C E}}{\partial H}=\frac{H h^{2} b}{E I}-\frac{P a b^{2} h}{2 E L} \\
\Rightarrow \frac{H h^{3}}{3 E I}+\frac{H h^{2} a}{E I}-\frac{P a^{2} b h}{2 E I L}+\frac{H h^{2} b}{E I}-\frac{P a b^{2} h}{2 E I L}+\frac{H h^{3}}{3 E I} \\
\frac{2 H h^{2}}{3}+H h L-\frac{P a b}{2}=0 \\
H=\frac{3 P a b}{2 h(2 h+3 L)}
\end{array}
\end{gathered}
$$

Since

Horizontal reaction due to udl, w over BC :

Figure 5.22(c)-(d)

The horizontal reaction due to small incremental load $w d x$ is given by

$$
d H=\frac{3 w d x \cdot x(L-x)}{2 h(2 h+3 L)}
$$

(using the expression derived earlier for concentrated force and putting

$$
P=w d x, a=x \text { and } b=L-x) .
$$

The horizontal reaction due to entire distributed load,

$$
\begin{aligned}
H & =\int d H \\
& =\int_{0}^{L} \frac{3 w d x \cdot x(L-x)}{2 h(2 h+3 L)} \\
& =\frac{3 w}{2 h(2 h+3 L)} \int_{0}^{L} x(L-x) d x \\
& =\frac{w L^{3}}{4 h(2 h+3 L)}
\end{aligned}
$$

Problem No: 4

Analyze the portal frame shown in Figure 5.23 by strain energy method.

Figure 5.23

Solution:

Static indeterminacy of the frame $=2$. Horizontal and vertical reactions at A are taken as redundant.

For the span $A B$ (x measured from A),

$$
\begin{gathered}
M_{x}=V x-w x^{2} / 2 \\
\frac{\partial M_{x}}{\partial H}=0 \quad \text { and } \frac{\partial M_{x}}{\partial V}=x \\
\frac{\partial U_{A B}}{\partial H}=0 \\
\frac{\partial U_{A B}}{\partial V}=\frac{1}{E I} \int_{0}^{L}\left[V x-w x^{2} / 2\right][x] d x=\frac{V L^{3}}{3 E I}-\frac{w L^{4}}{8 E I} \\
M_{x}=H x+V L-w L^{2} / 2 \\
\frac{\partial M_{x}}{\partial H}= \\
\frac{\partial U_{B C}}{\partial H}=\frac{1}{E I} \int_{0}^{L}\left[H x+V L-w L^{2} / 2\right][x] d x=\frac{V L^{3}}{2 E I}+\frac{H L^{3}}{3 E I}-\frac{w L^{4}}{4 E I} \\
\frac{\partial U_{B C}}{\partial V}=\frac{1}{E I} \int_{0}^{L}\left[H x+V L-w L^{2} / 2\right][L] d x=\frac{V L^{3}}{E I}+\frac{H L^{3}}{2 E I}-\frac{w L^{4}}{2 E I}
\end{gathered}
$$

Since;

$$
\begin{gather*}
\frac{\partial U}{\partial H}=0 \Rightarrow \frac{V L^{3}}{2 E I}+\frac{H L^{3}}{3 E I}-\frac{w L^{4}}{4 E I}=0 \quad \Rightarrow \frac{V L^{3}}{2 E I}+\frac{H L^{3}}{3 E I}-\frac{w L^{4}}{4 E I}=0 \\
6 V+4 H=3 w L \quad \text {---- } \tag{i}
\end{gather*}
$$

or
and
or

$$
\begin{array}{r}
\frac{\partial U}{\partial V}=0 \Rightarrow \frac{V L^{3}}{3 E I}-\frac{w L^{4}}{8 E I}+\frac{V L^{3}}{E I}+\frac{H L^{3}}{2 E I}-\frac{w L^{4}}{2 E I}=0 \\
32 V+12 H=15 \mathrm{Wl} \tag{ii}
\end{array}
$$

Solving Eqs (i) and (ii) for H and V,

$$
H=\frac{3 w L}{28} \quad \text { and } V=\frac{3 w L}{7}
$$

Problem No:5

The simple portal frame shown in fig., is asymmetrically loaded.EI is constant.Analyse the frame by the strain energy method.Sketch the bending moment diagram.

Solution:

- Finding the Redundant Force:

Degree of static indeterminacy $=1 \times 3-2=1$
Let us treat the horizontal reaction at D as redundant.Since there is no other horizontal force,

$$
\mathrm{HA}=-\mathrm{HD}=\mathrm{H}
$$

Since D is hinged, $\Delta d=0$

$$
\begin{gather*}
\partial \mathrm{U} / \partial \mathrm{H}=0 \\
1 / \mathrm{EI} \frac{\int \quad M \partial M}{\partial H} \mathrm{dx} \tag{1}
\end{gather*}
$$

VA x $3-45 \times 2=0$
$\mathrm{VA}=15 \mathrm{KN}$

Portion	Origin	Limits (m)	Mx (or) M	$\mathbf{\partial U} / \mathbf{\partial H}$
AB	A	0 to 5	- H.x	-x
BE	B	0 to 1	$30 \mathrm{x}-\mathrm{H} \times 5$	-5
CE	C	0 to 2	$15 \mathrm{x}-\mathrm{H} \times 5$	-5
DC	D	0 to 5	- H.x	-x

Substituting the values in equation (1)

$$
\begin{aligned}
& \frac{1}{\mathrm{EI}}\left\{\int_{0}^{5}(-\mathrm{H} x)(-x) d x+\int_{0}^{1}(30 x-5 \mathrm{H})(-5) d x\right. \\
& \left.\quad+\int_{0}^{2}(15 x-5 \mathrm{H})(-5) d x+\int_{0}^{5}(-\mathrm{H} x)(-x) d x\right\}=0
\end{aligned}
$$

$83.33 \mathrm{H}-75+25 \mathrm{H}-150+50 \mathrm{H}=0$

$$
158.33 \mathrm{H}=225
$$

$$
\mathrm{H}=1.421 \mathrm{KN}
$$

- Determining the Bending Moments:

Span AB,
$\mathrm{x}=0, \mathrm{x}=5 \mathrm{~m}$,
$\mathrm{Mx}=-\mathrm{Hx}=-1.421 \mathrm{x}$
$\mathrm{MA}=-7.11 \mathrm{kNm}$
Span BE,
$\mathrm{x}=0, \mathrm{x}=1 \mathrm{~m}$,
$\mathrm{Mx}=30 \mathrm{x}-5 \mathrm{H}$
$\mathrm{MB}=-7.11 \mathrm{kNm}$
$\mathrm{ME}=22.89 \mathrm{kNm}$
Span CE,

$$
\begin{aligned}
& \mathrm{x}=0, \mathrm{x}=2 \mathrm{~m} \\
& \mathrm{Mx}=15 \mathrm{x}-5 \mathrm{H} \\
& \mathrm{MC}=-7.11 \mathrm{kNm} \\
& \mathrm{ME}=22.89 \mathrm{kNm} \\
& \mathrm{Span} \mathrm{DC} \\
& \mathrm{x}=0, \mathrm{x}=5 \mathrm{~m}, \\
& \mathrm{Mx}=-\mathrm{Hx}=-1.421 \mathrm{x} \\
& \mathrm{MD}=0 \mathrm{kNm} \\
& \mathrm{ME}=-7.11 \mathrm{kNm}
\end{aligned}
$$

- Bending Moments Diagram:

