1.4 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY STRAIN ENERGY METHOD

(PLANE FRAMES)

Let a statically indeterminate structure has degree of indeterminacy as n. On the selected basic determinate structure apply the unknown forces R_1 , R_2 and R_n . Using the Eq. (4.16) the displacement Δ_j in the direction of R_j is expressed by

$$\Delta_j = \frac{\partial U}{\partial R_j}$$

(j = 1, 2,n) (5.1)

The equations (5.1) will provide the *n* linear simultaneous equations with *n* unknowns R_1 , R_2 and R_n . Since the Δ_j is known, therefore, the solution of simultaneous equations will provide the desired R_j (j=1, 2, ..., n).

For structures with members subjected to the axial forces only (i.e. pinjointed structures), the equation (5.1) is re-written as

$$\Delta_{j} = \frac{\partial}{\partial R_{j}} \sum \left(\frac{P^{2}L}{2AE} \right) = \sum \left(\frac{P \frac{\partial P}{\partial R_{j}}L}{AE} \right)$$
(5.2)

Where;

P is the force in the member due to applied loading and unknown

 R_j (j = 1, 2, ..., n); and L and AE are length and axial rigidity of the member, respectively.

For structures with members subjected to the bending moments (i.e. beams and rigidjointed frames), the equation (5.1) is re-written as

$$\Delta_{j} = \frac{\partial}{\partial R_{j}} \left(\int \frac{M^{2} dx}{2EI} \right) = \int \frac{M \frac{\partial M}{\partial R_{j}} dx}{EI} \quad (5.3)$$

where;

M is the bending moment due to applied loading and unknown

 R_j (j = 1, 2, ..., n) at a small element of length dx; and EI is the flexural rigidity.

Problem No:1

Determine the force in various members of the pin-jointed frame shown in Figure 5.20(a).Length and AE is constant for all members.

Solution:

The static indeterminacy of the pin-jointed frame is $=12+3-7\times2=1$. Let the force in the member BG be R as shown in Figure 5.20(b). According to the Castigliano's theorem

$$\frac{\partial U}{\partial R} = 0$$

The computation of $\partial U / \partial R$ is made in Table 5.6.

$$\frac{\partial U}{\partial R} = \frac{1}{AE} \left(P \frac{\partial P}{\partial R} L \right) = 0$$
$$\frac{1}{AE} \left(24R - 1920 \right) = 0$$

The final force in various members of the frame is shown in Table 5.6

Member	Length, <i>L</i> (<i>m</i>)	Р	$\frac{\partial P}{\partial R}$	$P \frac{\partial P}{\partial R} L$	Final force (kN)
AB	2	-120 + <i>R</i>	1	2 <i>R</i> - 240	-40
AG	2	120 <i>-R</i>	-1	2 <i>R</i> - 240	40
AF	2	-60 + <i>R</i>	1	2 <i>R</i> - 120	20
BC	2	-120 + <i>R</i>	1	2 <i>R</i> - 240	-40
BG	2	$-R \cap =$	-1	2 <i>R</i>	-80
CD	2	-120 + R	1	2 <i>R</i> - 240	-40
CG	2	120 -R	-1	2 <i>R</i> - 240	40
DE		-60 + R	-1	2 <i>R</i> - 120	20
DG	2	60 -R	-1	2 <i>R</i> - 120	-20
EF	2	-60 + R	1	2 <i>R</i> - 120	20
EG	2	60 -R	-1	2 <i>R</i> - 120	-20
FG	2	60 - <i>R</i>	-1	2 <i>R</i> - 120	-20

 $\sum_{\substack{\partial U \\ \partial R}} 24R - 1920$ $\frac{\partial U}{\partial R} = \frac{1}{AE} \left(P \frac{\partial P}{\partial R} L \right) = 0$ $\frac{1}{AE} \left(24R - 1920 \right) = 0$ R = 80 kN

or

The final force in various members of the frame is shown in Table 5.6.

Problem No:2

Determine the force in various members of the pin-jointed frame as shown in Figure 5.21(a), if the member *BC* is short by an amount of Δ . All members of the frame have same axial rigidity as AE.

Solution:

The static indeterminacy of the pin-jointed frame is $=5 + 4 - 2 \times 4 = 1$. Since the member BC is short by an amount of \triangle , therefore, apply a force *R* in the member BC such that displacement in the direction of *R* is \triangle . Thus, according to the Castigliano's theorem.

$$\frac{\partial U}{\partial R} = \Delta$$

The computation of $\partial U / \partial R$ is made in Table 5.7.

Member	Length, <i>L</i> (<i>m</i>)	F	$\frac{\partial F}{\partial R}$	$F \frac{\partial F}{\partial R} L$	Final force
AB		R	1	RL	1 AD
AC	$\sqrt{2}L$	$-\sqrt{2}R$	- √2	2 _\ 2 <u>RL</u>	- \sqrt{2}
BC	L	R	1	RL	1
BD	L	$-\sqrt{2}R$	- √2	2√2 <i>RL</i>	- √2
CD	√2L	R	1	RL	1

Table 5.7

$$\Sigma \left(\frac{AE\Delta}{(3+4\sqrt{2})L}\right)$$
$$(3+4\sqrt{2})RL$$
$$\frac{\partial U}{\partial R} = \frac{1}{AE} \left(F \frac{\partial F}{\partial R}L\right) = \Delta$$
$$\frac{1}{AE} \left(3+4\sqrt{2}\right)RL = \Delta$$
$$R = \frac{AE\Delta}{(3+4\sqrt{2})L}$$

or

The final force in various members of the frame is shown in Table 5.7.

÷

Problem No:3

Determine the horizontal reaction of the portal frame shown in Figure 5.22(a) by energy method. Also, calculate the horizontal reaction when the member BC is subjected to distributed load, w over entire length.

Solution:

Static indeterminacy of the frame = 1.

Let the horizontal reaction, H at D be the redundant. The reaction at A and D are

 $H_A = H;$ $H_D = H$ $R_A = Pb/L$ and $R_D = Pa/L$

For the span AB (\boldsymbol{x} measured from A),

$$M_x = Hx$$
 and $\frac{\partial M_x}{\partial H} = x$
 $\frac{\partial U_{AB}}{\partial H} = \frac{Hh^3}{3EI}$

For the span BE (x measured from B),

$$M_x = Hh - \frac{Pb}{L}x$$
 and $\frac{\partial M_x}{\partial H} = h$

$$\frac{\partial U_{BB}}{\partial H} = \frac{1}{EI} \int_{0}^{a} \left[Hh - \frac{Pb}{L} x \right] hdx = \frac{Hh^{2}a}{EI} - \frac{Pa^{2}bh}{2EIL}$$

For the span CD (X Measured from D), $M_x = Hx$ and $\frac{\partial M_x}{\partial H} = x$ $\frac{\partial U_{CD}}{\partial H} = \frac{Hh^3}{3EI}$

For the span CE (*x* measured from C),

$$M_{x} = Hh - \frac{Pa}{L} x \quad \text{and} \quad \frac{\partial M_{x}}{\partial H} = h$$

$$\frac{\partial U_{CB}}{\partial H} = \frac{Hh^{2}b}{BI} - \frac{Pab^{2}h}{2EIL}$$
Since
$$\frac{\partial U}{\partial H} = 0 \quad \Rightarrow \frac{Hh^{3}}{3EI} + \frac{Hh^{2}a}{EI} - \frac{Pa^{2}bh}{2EIL} + \frac{Hh^{2}b}{EI} - \frac{Pab^{2}h}{2EIL} + \frac{Hh^{2}}{3EI}$$

$$\frac{2Hh^{2}}{3} + HhL - \frac{Pab}{2} = 0$$

$$H = \frac{3Pab}{2h(2h+3L)}$$

Horizontal reaction due to udl, w over BC :

Figure 5.22(c)-(d)

The horizontal reaction due to small incremental load wdx is given by

$$dH = \frac{3wdx.x(L-x)}{2h(2h+3L)}$$

(using the expression derived earlier for concentrated force and putting

P = wdx, a = x and b = L - x).

The horizontal reaction due to entire distributed load,

$$H = \int dH$$
$$= \int_0^L \frac{3w \, dx \, x(L-x)}{2h(2h+3L)}$$
$$= \frac{3w}{2h(2h+3L)} \int_0^L x(L-x) \, dx$$
$$= \frac{w \, L^3}{4h(2h+3L)}$$

Problem No:4

Analyze the portal frame shown in Figure 5.23 by strain energy method.

Solution:

Static indeterminacy of the frame = 2. Horizontal and vertical reactions at A are taken as redundant.

For the span AB (x measured from A),

$$M_{x} = Vx - wx^{2}/2$$

$$\frac{\partial M_{x}}{\partial H} = 0 \quad \text{and} \quad \frac{\partial M_{x}}{\partial V} = x$$

$$\frac{\partial U_{AB}}{\partial H} = 0$$

$$\frac{\partial U_{AB}}{\partial V} = \frac{1}{EI} \int_{0}^{L} \left[Vx - wx^{2}/2 \right] [x] dx = \frac{VL^{3}}{3EI} - \frac{wL^{4}}{3EI}$$

$$M_{x} = Hx + VL - wL^{2}/2$$

$$\frac{\partial M_{x}}{\partial H} = x \quad \text{and} \quad \frac{\partial M_{x}}{\partial V} = L$$

$$\frac{\partial U_{BC}}{\partial H} = \frac{1}{EI} \int_{0}^{L} \left[Hx + VL - wL^{2}/2 \right] [x] dx = \frac{VL^{3}}{2EI} + \frac{HL^{3}}{3EI} - \frac{wL^{4}}{4EI}$$

$$\frac{\partial U_{BC}}{\partial V} = \frac{1}{EI} \int_{0}^{L} \left[Hx + VL - wL^{2}/2 \right] [L] dx = \frac{VL^{3}}{EI} + \frac{HL^{3}}{2EI} - \frac{wL^{4}}{2EI}$$

Since;

$$\frac{\partial U}{\partial H} = 0 \quad \Rightarrow \quad \frac{VL^3}{2EI} + \frac{HL^3}{3EI} - \frac{wL^4}{4EI} = 0 \qquad \Rightarrow \quad \frac{VL^3}{2EI} + \frac{HL^3}{3EI} - \frac{wL^4}{4EI} = 0$$

or

6 V + 4 H = 3 wL ----- (i)

and

or

$$\frac{\partial U}{\partial V} = 0 \quad \Rightarrow \quad \frac{VL^3}{3EI} - \frac{wL^4}{8EI} + \frac{VL^3}{EI} + \frac{HL^3}{2EI} - \frac{wL^4}{2EI} = 0$$
$$32 V + 12 H = 15 Wl \quad ----- \quad (ii)$$

Solving Eqs (i) and (ii) for *H* and *V*,

$$H = \frac{3wL}{28} \quad \text{and} \quad V = \frac{3wL}{7}$$

Problem No:5

The simple portal frame shown in fig., is asymmetrically loaded.EI is constant.Analyse the frame by the strain energy method.Sketch the bending moment diagram.

Solution:

• Finding the Redundant Force:

Degree of static indeterminacy = $1 \times 3 - 2 = 1$

Let us treat the horizontal reaction at D as redundant.Since there is no other horizontal force,

HA = - HD = H
Since D is hinged,∆d = 0
$$\partial U/\partial H = 0$$

 $1/EI \frac{\int M\partial M}{\partial H} dx --- (1)$
VA x 3 - 45 x 2 = 0
VA = 15 KN

Portion	Origin	Limits (m)	Mx (or) M	9 U/ 9 H
AB	А	0 to 5	- H.x	-X
BE	OBBRVE O	0 to 1	30x – H x 5	-5
CE	С	0 to 2	15x – H x 5	-5
DC	D	0 to 5	- H.x	-X

Substituting the values in equation (1)

$$\frac{1}{\text{EI}} \left\{ \int_0^5 (-\text{H}x) (-x) \, dx + \int_0^1 (30x - 5\text{H}) (-5) \, dx + \int_0^2 (15x - 5\text{H}) (-5) \, dx + \int_0^5 (-\text{H}x) (-x) \, dx \right\} = 0$$
83.33 H - 75 + 25 H - 150 + 50 H = 0
158.33 H = 225
H = 1.421 KN

• Determining the Bending Moments: Span AB, x = 0, x = 5m,Mx = -Hx = -1.421xMA = -7.11 kNmSpan BE, x = 0, x = 1m,Mx = 30x - 5HMB = -7.11 kNmME = 22.89 kNmSpan CE, x = 0, x = 2m,Mx = 15x - 5HMC = -7.11 kNmME = 22.89 kNmSpan DC, x = 0, x = 5m,Mx = -Hx = -1.421xMD = 0 kNmME = -7.11 kNm**Bending Moments Diagram:** • 7.105 7.105 в

D