
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

SYNCHRONIZATION

• Synchronization in java is the capability to control the access of multiple threads to any

shared resource.

• Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

• When two or more threads need access to a shared resource, they need some way to ensure

that the resource will be used by only one thread at a time. The process by which this is achieved

is called synchronization. Java provides unique, language level support for it.

• Key to synchronization is the concept of the monitor (also called a semaphore).

• A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread

can own a monitor at a given time. When a thread acquires a lock, it is said to have entered the

monitor. All other threads attempting to enter the locked monitor will be suspended until the

first thread exits the monitor.

• These other threads are said to be waiting for the monitor. A thread that owns a monitor can

reenter the same monitor if it so desires.

• Approaches:

○○ Using synchronized Method

○○ Using synchronized Statement

Using Synchronized Methods

➢ Synchronization is easy in Java, because all objects have their own implicit monitor

associated with them.

➢ To enter an object’s monitor, just call a method that has been modified with the

synchronized keyword.

➢ While a thread is inside a synchronized method, all other threads that try to call it (or

any other synchronized method) on the same instance have to wait.

➢ To exit the monitor and relinquish control of the object to the next waiting thread, the

owner of the monitor simply returns from the synchronized method.

• To understand the need for synchronization, we will consider a simple example that does not

use it—but should.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

• The following program has three simple classes.

• The first one, Callme, has a single method named call(). The call() method takes a String

parameter called msg. This method tries to print the msg string inside of square brackets. After

call() prints the opening bracket and the msg string, it calls Thread. sleep(1000), which pauses

the current thread for one second.

• The constructor of the next class, Caller, takes a reference to an instance of the Callme class

and a String, which are stored in target and msg, respectively. The constructor also creates a

new thread that will call this object’s run() method. The thread is started immediately. The

run() method of Caller calls the call() method on the target instance of Callme, passing in the

msg string.

• Finally, the Synch class starts by creating a single instance of Callme, and three instances of

Caller, each with a unique message string.

• The same instance of Callme is passed to each Caller.

// This program is not synchronized.

class Callme

{

void call(String msg)

{

System.out.print(“[“ + msg);

try

{

Thread.sleep(1000);

}

catch(InterruptedException e)

{

System.out.println(“Interrupted”);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

System.out.println(“]”);

}

}

class Caller implements Runnable

{

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)

{

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run()

{

target.call(msg);

}

}

public class Synch

{

public static void main(String args[])

{

Callme target = new Callme();

Caller ob1 = new Caller(target, “Hello”);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

Caller ob2 = new Caller(target, “Synchronized”);

Caller ob3 = new Caller(target, “World”);

// wait for threads to end

try

{

ob1.t.join();

ob2.t.join();

ob3.t.join();

}

catch(InterruptedException e)

{

System.out.println(“Interrupted”);

}

}

}

Sample Output:

Hello[Synchronized[World]

]

]

As we can see, by calling sleep(), the call() method allows execution to switch to

another thread. This results in the mixed-up output of the three message strings.

In this program, nothing exists to stop all three threads from calling the same method,

on the same object, at the same time. This is known as a race condition, because the three

threads are racing each other to complete the method.

This example used sleep() to make the effects repeatable and obvious. In most

situations, a race condition is more subtle and less predictable, because we can’t be sure when

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

the context switch will occur. This can cause a program to run right one time and wrong the

next. To fix the preceding program, we must serialize access to call(). That is, we must restrict

its access to only one thread at a time. To do this, we simply need to precede call()’s definition

with the keyword synchronized, as shown here:

This prevents other threads from entering call() while another thread is using it.

class Callme

{

synchronized void call(String msg)

{

...

Following is the sample java program after synchronized has been added to call():

class Callme

{

synchronized void call(String msg)

{

System.out.print(“[“ + msg);

try

{

Thread.sleep(1000);

}

catch(InterruptedException e)

{

System.out.println(“Interrupted”);

}

System.out.println(“]”);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

}

class Caller implements Runnable

{

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)

{

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run()

{

target.call(msg);

}

}

public class Synch

{

public static void main(String args[])

{

Callme target = new Callme();

Caller ob1 = new Caller(target, “Hello”);

Caller ob2 = new Caller(target, “Synchronized”);

Caller ob3 = new Caller(target, “World”);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

// wait for threads to end

try

{

ob1.t.join();

ob2.t.join();

ob3.t.join();

}

catch(InterruptedException e)

{

System.out.println(“Interrupted”);

}

}

}

Output:

[Hello]

[Synchronized]

[World]

Using synchronized Statement

While creating synchronized methods within classes that we create is an easy and

effective

means of achieving synchronization, it will not work in all cases. We have to put calls to

the methods defined by the class inside a synchronized block.

Syntax:

synchronized(object)

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that

a call to a method that is a member of object occurs only after the current thread has

successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within the

run() method:

// This program uses a synchronized block.

class Callme

{

void call(String msg)

{

System.out.print(“[“ + msg);

try

{

Thread.sleep(1000);

}

catch (InterruptedException e)

{

System.out.println(“Interrupted”);

}

System.out.println(“]”);

}

}

class Caller implements Runnable

{

String msg;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

Callme target;

Thread t;

public Caller(Callme targ, String s)

{

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run()

{

synchronized(target)

{

// synchronized block

target.call(msg);

}

}

}

public class Synch1

{

public static void main(String args[])

{

Callme target = new Callme();

Caller ob1 = new Caller(target, “Hello”);

Caller ob2 = new Caller(target, “Synchronized”);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8392 -OBJECT ORIENTED PROGRAMMING

Caller ob3 = new Caller(target, “World”);

// wait for threads to end

try

{

ob1.t.join();

ob2.t.join();

ob3.t.join();

}

catch(InterruptedException e)

{

System.out.println(“Interrupted”);

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement

is used inside Caller’s run() method. This causes the same correct output as the preceding

example, because each thread waits for the prior one to finish before proceeding.

Sample Output:

[Hello]

[World]

[Synchronized]

