
ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Program Level Performance Analysis 

 Execution time of a program often varies with the input data values because 

those values select different execution paths in the program. 

 Cache has a major effect on program performance. 

 Execution times may vary even at the instruction level. 

 Floating-point operations are the most sensitive to data values, but the 

normal integer execution pipeline can also introduce data-dependent 

variations. 

Program performance is measured in following ways : 

1. Simulator of CPU supplied by manufacture. 

2. Timer connected to the microprocessor bus can be used to measure 

performance of executing sections of code. 

3. A logic analyzer can be connected to the microprocessor bus to measure 

the start and stop times of a code segment. 

Elements of Program Performance 

Program execution time is given as 

Execution time = Program path + Instruction timing 

The path is the sequence of instructions executed by the program. The 

instruction timing is determined based on the sequence of instructions traced by 

the program path, which takes into account data dependencies, pipeline behavior 

and caching. 

Program execution times depend on several factors : 

1. Input data values : Different values, different execution paths. 

2. Cache behavior : Also dependent on input values. 

3. Instruction level : Floating-point operations and pipelining effects. 

Program paths offer insight into a program's dynamic behavior that is 

difficult to achieve any other way. Unlike simpler measures such as program pro-



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

files, which aggregate information to reduce the cost of collecting or storing data, 

paths capture some of the usually invisible dynamic sequencing of statements. 

Examination of programs' paths has unveiled a striking degree of path 

locality, which the computer architecture and compiler communities have 

profitably exploited to increase program performance. 

Paths are useful at another level : as a convenient abstraction for reasoning about 

a program's runtime behavior. 

A program path records a program's executable statements in the order in 

which they rim. For example, consider a simple function to add the even natural 

numbers from 1 to N : 

int AddEvenNumbers (int N) 

{ 

int sum = 0; 

/* SI * / 

for (int j = 1, j < = N ; j + = 1) { 

/* S2 * / if ((j % 2) = = 0) { 

/* S3 * / 

sum += j 

} 

} 

/* S4 * / 

return sum ; 

} 

When invoked with an argument of 3, this function executes the path SI, 

S2, SI, S2, S3, SI, S2, SI, S4. 

This type of path, which is also known as an instruction or statement trace, 

is unwieldy and difficult to manipulate for two reasons: first, its length is 

proportional to how long a program runs and, second, it must be read sequentially, 

like a magnetic tape. 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Computer architects use instruction traces to simulate processor designs, 

but most others found that the cost of collecting and recording a full instruction 

trace outweighed its utility. 

Path profiling code for the Add Even Numbers function. The code along 

the edges computes unique numbers for each acyclic path in the function. 

Path Value in acc 

3, 4, 5, 6 0 

3,4,6 1 

3,7 2 

1, 2, 3, 4, 5, 6 3 

1, 2, 3, 4, 6 4 

1, 2, 3, 7 5 

 

 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Program profiling, a widely used substitute for paths, captures which 

statements execute, but not the order in which they rim. Since profile only records 

statement executions, it can be compactly summarized as a table of execution 

frequencies. The preceding example's program profile is SI = 4, S2 = 3, S3 = 1, 

S4 = 1. 

Program performance metrics : 

1. Average-case execution time : Typically used in application 

programming. 

2. Worst-case execution time : A component in deadline satisfaction. 

3. Best-case execution time : Task-level interactions can cause best-case 

program behavior to result in worst-case system behavior. 


