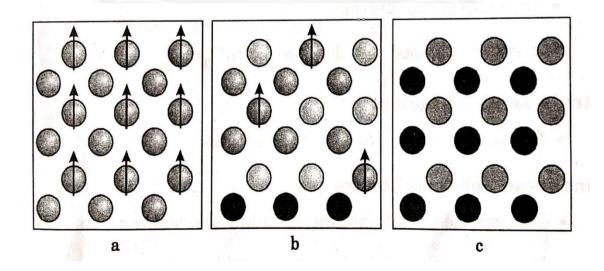
MAGNETIC SEMICONDUCTORS


- ➤ **Definition:**Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties.
- ➤ *Example:* Manganese-doped GaAS system, which shows a high Curie temperature upto 200 K.

Importance of Magnetic semiconductors

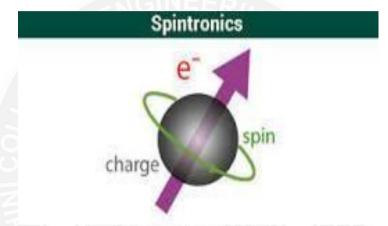
- ➤ If it is applied in devices, these materials could provide a new type of control of conduction.
- ➤ But, traditional electronics are based on control of charge carriers (*n or p type*).
- ➤ Practical magnetic semiconductors would also allow control of quantum spin state (up or down).
- ➤ This would theoretically provide near-total spin polarization, which is an important property for spintronics.

Dilute magnetic semiconductor (DMS)

- These are based on traditional semiconductors, but they are doped with transition metals instead of, or in addition to electronically active elements.
- ➤ They are of interest because of their unique spintronics properties with possible technological applications.

Examples for magnetic semiconductors

- 1. Mangenese doped Indium Arsenide and Gallium Arsenide (GaMnAs).
- 2. Manganese doped Indium Antimonide.
- 3. Zinc Oxide.
- 4. Manganese doped Zinc Oxide.
- 5. n-type Cobalt doped Zinc Oxide.
- **6.** p-type transparent MgO films with cation vacancies.
- 7. Cobalt doped Titanium Dioxide.
- 8. Iron doped Titanium Dioxide.
- 9. Chromium doped Titanium Dioxide.
- 10. Copper doped Titanium Dioxide.
- 11. Nickel doped Titanium Dioxide.
- 12. Manganese doped Tin Dioxide.
- 13. Iron doped Tin Dioxide.
- 14. Strontium doped Tin Dioxide (SrSnO₂).
- **15.**Chromium doped Aluminium Nitride.


Applications of magnetic semiconductors

- 1. They are used to make quantum computing architecture using spin polarized electron.
- 2. They are used in magneto optic applications.
- 3. They are used to fabricate spin transistors and spin polarized Light Emitting Diodes (LEDs).
- 4. They are used to exhibit favourable dilute magnetism.

SPINTRONICS

Spintronics – Spin Based Electronics

- ➤ **Definition:** Study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid state devices.
- > Spintronics uses electron spins in addition to or in place of the electron charge.
- ➤ The rotational moment creates a small magnetic field.
- ➤ Key concept is controlling the spin of electrons.

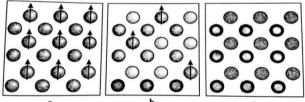
> Spintronics is intrinsic spin of the electron + its associated magnetic moment + its fundamental electronic charge.

Principle

- > Spintronics is based on the spin of electrons rather than its charge.
- Every electron exists in one of the two states- spin up and spin down with spins either positive half or negative half.
- ➤ In other words, electrons can rotate either clockwise or anticlockwise around its own axis with constant frequency (as in Figure. 6.22).
- ➤ The two possible spin states represent '0' and '1' in logical operations.

Applications

- 1. Giant magnetoresistance (GMR) in various fields.
- 2. Spin valve.
- 3. Solid state non volatile memories.
- 4. Quantum Information processing and quantum computation.
- 5. Spin based transistors.


Electonic Devices Vs Spintronic Devices

Sl.	Electronic Devices	Spintronic Devices
No.		
1	Power failure problem	No power failure problem
2	Boot up waitin problem	No Boot up waitin problem
3	More power consumption	Less power consumption
4	Normal speed	Faster speed
5	Cheaper	Costlier
6	Classical property	Quantum Property
7	Less Compact	Mor Compact
8.	Based on properties of charge of electron	Based on intrinsic property of spin of electron

- These are based on traditional semiconductors, but they are doped with transition metals instead of, or in addition to electronically active elements.
- They are of interest because of their unique spintronics properties with possible technological applications.

a dilute magnetic semiconductor (e.g. (GaMn) As, (InMn), P, ZnCoO etc) a non-magnetic semiconductor (e.g. GaAs, InP, Cu2O, NiO etc)

Examples for magnetic semiconductors

- 16. Mangenese doped Indium Arsenide and Gallium Arsenide (GaMnAs).
- 17. Manganese doped Indium Antimonide.
- 18. Zinc Oxide.
- 19. Manganese doped Zinc Oxide.
- **20.** n-type Cobalt doped Zinc Oxide.
- 21. p-type transparent MgO films with cation vacancies.
- 22. Cobalt doped Titanium Dioxide.
- 23. Iron doped Titanium Dioxide.
- **24.** Chromium doped Titanium Dioxide.
- **25.** Copper doped Titanium Dioxide.
- **26.** Nickel doped Titanium Dioxide.

- 27. Manganese doped Tin Dioxide.
- 28. Iron doped Tin Dioxide.
- **29.** Strontium doped Tin Dioxide (SrSnO₂).
- 30. Chromium doped Aluminium Nitride.

Applications of magnetic semiconductors

- 5. They are used to make quantum computing architecture using spin polarized electron.
- 6. They are used in magneto optic applications.
- 7. They are used to fabricate spin transistors and spin polarized Light Emitting Diodes (LEDs).
- 8. They are used to exhibit favourable dilute magnetism.

SPINTRONICS

Spintronics – Spin Based Electronics

- ➤ **Definition:** Study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid state devices.
- > Spintronics uses electron spins in addition to or in place of the electron charge.
- ➤ The rotational moment creates a small magnetic field.
- > Key concept is controlling the spin of electrons.

> Spintronics is intrinsic spin of the electron + its associated magnetic moment + its fundamental electronic charge.

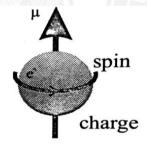


Fig. 6.22 spin of an electron

Principle

- > Spintronics is based on the spin of electrons rather than its charge.
- > Every electron exists in one of the two states- spin up and spin down with spins either positive half or negative half.
- ➤ In other words, electrons can rotate either clockwise or anticlockwise around its own axis with constant frequency (as in Figure. 6.22).
- The two possible spin states represent '0' and '1' in logical operations.

Applications

- 6. Giant magnetoresistance (GMR) in various fields.
- 7. Spin valve.
- 8. Solid state non volatile memories.
- 9. Quantum Information processing and quantum computation.
- 10. Spin based transistors.

Electonic Devices Vs Spintronic Devices

Sl. No.	Electronic Devices	Spintronic Devices
1	Power failure problem	No power failure problem
2	Boot up waitin problem	No Boot up waitin problem
3	More power consumption	Less power consumption
4	Normal speed	Faster speed
5	Cheaper	Costlier
6	Classical property	Quantum Property
7	Less Compact	Mor Compact
8.	Based on properties of charge of electron	Based on intrinsic property of spin of electron

