
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

PREPROCESSOR DIRECTIVES

The C Preprocessor is not part of the compiler but it extends the power of C

programming language. . The preprocessor provides the ability for the inclusion of header files,

macro expansions, conditional compilation, and line control.The preprocessor’s functionality

comes before compilation of source code and it instruct the compiler to do required pre-

processing before actual compilation. Working procedure of C program is shown in Fig. 2.8.

In general, preprocessor directives

 begin with a # symbol

 do not end with semicolon

 are processed before compilation of source code

Fig. 2.8 Working Procedure of C Program

There are four types of Preprocessor Directives supported by C language. They are:

 File Inclusion directive

 Macro Substitution directive

 Conditional directive

 Miscellaneous directive

List of all possible directives belong to each of the above is listed in Fig 2.9.

Fig Preprocessor Directives

C Program

Executable

Code

Linker

Compiler

Preprocessor

https://en.wikipedia.org/wiki/Header_files
https://en.wikipedia.org/wiki/Header_files
https://en.wikipedia.org/wiki/Header_files
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Conditional_compilation

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

The details of above listed preprocessor directives are narrated in Table.

Table Preprocessor directives and their description

Directive Description

#include It includes header file inside a C Program.

#define It is substitution macro. It substitutes a constant with an expression.

#if It includes a block of code depending upon the result of conditional

expression.

#else It is a complement of #if

#elif #else and #if in one statement. It is similar to if else ladder.

#endif It flags the end of conditional directives like #if, #elif etc.

#undef Undefines a preprocessor macro.

#ifdef Returns true If constant is defined earlier using #define.

#ifndef Returns true If constant is not defined earlier using #define.

#pragma Issues special commands to the compiler.

#error Prints error message on stderr.

File Inclusion directive

#include

It is used to include header file inside C Program. It checks for header file in current

directory, if path is not mentioned. To include user defined header file double quote is used ("")

instead of using triangular bracket (< >).

Example:

#include <stdio.h> // Standard Header File

#include "big.h" // User Defined Header File

Preprocessor replaces #include <stdio.h> with the content of stdio.h header file.

#include "Sample.h" instructs the preprocessor to get Sample.h from the current directory and

add the content of Sample.h file.

Macro Substitution directive

#define

It is a simple substitution macro. It substitutes all occurrences of the constant and replace

them with an expression.There are two types of macro supported by C. They are:

1. Simple macro

2. macro with arguments

Simple macro

Syntax:

#define identifier value

Where
#define - is apreprocessor directive used for text substitution.

identifier - is an identifier used in program which will be replaced by value.(In

general the identifiers are represented in captital letters in order to

differentiate them from variable)

value -It is the value to be substituted for identifier.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

Example:

#define PI 3.14

#define NULL 0

Example:

//Program to find the area of a circle using simple macro

#include <stdio.h>

#define PI 3.14

int main()

{

int radius;

float area;

printf(“Enter the radius of circle \n”);

scanf(“%d”, &radius);

area= PI * radius * radius;

printf(“Area of Circle=%f”, radius);

}

Output

Enter the radius of circle

10

Area of Circle = 314.000000

macro with arguments

#define Preprocessing directive can be used to write macro definitions with parameters.

Whenever a macro identifier is encountered, the arguments are substituted by the actual

arguments from the C program.

Data type definition is not necessary for macro arguments. Any numeric values like int,

float etc can be passed as a macro argument . Specifically, argument macro is not case sensitive.

Example:

#define area(r) (3.14*r*r)

Example:

//Program to find the area of a circle using macro with arguments

#include <stdio.h>

#define area(r) (3.14*r*r)

int main()

{
int radius;

float a;

printf(“Enter the radius of circle \n”);

scanf(“%d”, &radius);

a= area(radius);

printf(“Area of Circle=%f”, a);

}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

Output

Enter the radius of circle
10

Area of Circle = 314.000000

Predefined Macros in C Language

C Programming language defines a number of macros. Table 2.8 is the list of some

commonly used macros in C

Table 2.8 Predefined macros in C

Macro Description

NULL Value of a null pointer constant.

EXIT_SUCCESS Value for the exit function to return in case of successful
completion of program.

EXIT_FAILURE Value for the exit function to return in case of program
termination due to failure.

RAND_MAX Maximum value returned by the rand function.

 FILE Contains the current filename as a string.

 LINE Contains the current line number as a integer constant.

 DATE Contains current date in "MMM DD YYYY" format.

 TIME Contains current time in "HH:MM:SS" format.

Example:

// Program to print the values of Predefined macros

#include <stdio.h>

#include <stdlib.h>

int main()

{

}

Output

printf("NULL : %d\n", NULL);

printf("EXIT_SUCCESS : %d\n", EXIT_SUCCESS);

printf("EXIT_FAILURE : %d\n", EXIT_FAILURE);

printf("RAND_MAX : %d\n", RAND_MAX);

printf("File Name : %s\n", FILE);

printf("DATE : %s\n", DATE);

printf("Line : %d\n", LINE);

return 0;

NULL : 0

EXIT_SUCCESS : 0

EXIT_FAILURE : 1

RAND_MAX : 32767

File Name : BuiltinMacro.c

DATE : Aug 16 2017

Line : 12

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

Conditional directive

#if, #elif, #else and #endif

The Conditional directives permit to include a block of code based on the result of

conditional expression.

Syntax:

#if <expression>

statements;

#elif <expression>

statements;

Where

#else

#endif

statements;

Expression represents a condition which produces a boolean value as a result.

Conditional directive is similar to if else condition but it is executed before

compilation. Condition_Expression must be only constant expression.

Example:

//Program to illustrate the conditional directives

#include <stdio.h>
#define A 10
int main()
{

#if (A>5)
printf(“A=%d”, X);

#elif (A<5)
printf(“A=%d”, 4);

#else
printf(“A=%d”, 0);

#endif
return 0;

}
Output
X=10

#undef

The #undef directive undefines a constant or preprocessor macro defined

previously using #define.

Syntax:

#undef <Constant>

https://www.cprogramming.com/reference/preprocessor/define.html

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

STUDENTSFOCUS
.COM

Example:
#include<stdio.h>
#define P 100
#ifdef P

#undef P
#define P 30

#else
#define P 100

#endif
int main()
{

}
Output
30

printf("%d",P);
return 0;

#ifdef #ifdef, #ifndef

#ifdef

#ifdef directive is used to check whether the identifier is currently defined.

Identifiers can be defined by a #define directive or on the command line.

#ifndef
#ifndef directive is used to check whether the identifier is not currently defined.

Example:

#ifdef PI

printf("Defined \n");

#endif

#ifndef PI

printf("First define PI\n");

#endif

Output:

First define PI

Miscellaneous directive

The pragma directive is used to access compiler-specific preprocessor extensions.

Each pragma directive has different implementation rule and use . There are many type

of pragma directive and varies from one compiler to another compiler .If compiler does

not recognize particular pragma then it ignores the pragma statement without showing

any error or warning message.

Example:
#pragma sample
int main()
{

printf(“Pragma verification “);
return 0;

}
Output
Pragma verification

Since #pragma sample is unknown for Turbo c compiler, it ignores sample

directive without showing error or warning message and execute the whole program

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMANTALS OF DATA STRUCTURES IN C

STUDENTSFOCUS
.COM

assuming #pragma sample statement is not present. The following are the list of

possible #pragma directives supported by C.

1. #pragma startup

2. #pragma exit

3. pragma warn

4. #pragma option

5. #pragma inline

6. #pragma argsused

7. #pragma hdrfile

8. #pragma hdrstop

9. #pragma saveregs

#error

The #error directive causes the preprocessor to emit an error message. #error

directive is used to prevent compilation if a known condition that would cause the

program not to function properly.

Syntax:

#error “message”

Example:

int main()

{

#ifndef PI

#error "Include PI”

#endif

return 0;

}

Output

compiler error --> Error directive : Include PI

#line

It tells the compiler that next line of source code is at the line number which has been
specified by constant in #line directive

Syntax:

#line <line number> [File Name]

Where
File Name is optional
Example:
int main()
{

#line 700
printf(Line Number %d”, LINE);
printf(Line Number %d”, LINE);
printf(Line Number %d”, LINE);
return 0;

}

Output
700
701
702

	PREPROCESSOR DIRECTIVES
	File Inclusion directive
	Example:
	Macro Substitution directive #define
	Simple macro Syntax:
	Example: (1)
	Example: (2)
	Output
	macro with arguments
	Example: (3)
	Example: (4)
	Output (1)
	Predefined Macros in C Language
	Example: (5)
	Output (2)
	Conditional directive
	Syntax:
	Example: (6)
	Output X=10
	The #undef directive undefines a constant or preprocessor macro defined previously using #define.
	#undef <Constant>
	#include<stdio.h> #define P 100 #ifdef P
	#else
	#endif
	{
	Output 30
	#ifdef #ifdef, #ifndef #ifdef
	Identifiers can be defined by a #define directive or on the command line. #ifndef
	Example: (7)
	printf("Defined \n");
	printf("First define PI\n");
	First define PI
	The pragma directive is used to access compiler-specific preprocessor extensions. Each pragma directive has different implementation rule and use . There are many type of pragma directive and varies from one compiler to another compiler .If compiler d...
	{ (1)
	}
	Pragma verification
	assuming #pragma sample statement is not present. The following are the list of possible #pragma directives supported by C.
	2. #pragma exit
	4. #pragma option
	6. #pragma argsused
	8. #pragma hdrstop
	#error
	Syntax: (1)
	Example: int main()
	#ifndef PI
	return 0;
	Output (3)
	#line
	Syntax: (2)
	Example: (8)

