2.1 JOINT DISTRIBUTION

Two Dimensional Random variables:

Let *S* be the sample space. Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each outcome $s \in S$. Then (X, Y) is a two dimensional random variable.

Types of Random Variables:

- (i) Discrete Random Variables
- (ii) Continuous random variables

Discrete random Variables:

Two Dimensional Discrete Random variable

If the possible values (X, Y) are finite, then (X, Y) is called a two – dimensional discrete random variable and it can be represented by $(x_i, y_j), i = 1, 2, ..., n; j =$

1,2, ...,*m*

BSERVE OPTIMIZE OUTSPRE

Two Dimensional Continuous Random variable

If (X, Y) can take all the values in a region *R* in the *XY* plane, then (X, Y) is called a two – dimensional continuous random variable.

Discrete Random variables:

In the study of two dimensional discrete random variables we have the following 5 important terms.

- (i) Joint Probability function (or) Joint Probability mass function (PMF)
- (ii) Joint Probability distribution
- (iii) Marginal probability function of X
- (iv) Marginal probability function of Y
- (v)Conditional Probability function

Joint Probability Function (or) Joint Probability mass function

Let *X*, *Y* be a two dimensional discrete random variable for each possible outcome (X_i, Y_j) . We associate a number $P(X_i, Y_j)$ representing $[X = x_i, Y = y_j]$ and satisfies the following conditions

i) $P[x_i, y_j] \ge 0^{OBSERVE} OPTIMIZE OUTSPREA$

ii)
$$\sum \sum p(x_i, y_j) = 1$$

The function $P[x_i, y_j]$ is called joint probability mass function of x, y

Conditional distribution of X given Y

$$P[X = x_i / Y = y_j] = \frac{P[X = x_i \cap Y = y_j]}{P[Y = y_j]}$$

$$= \frac{P[X = x_i, Y = y_j]}{P[Y = y_j]}$$

$$P[Y = y_j / X = x_i] = \frac{P[Y = y_j \cap X = x_i]}{P[X = x_i]}$$

$$P[X = x_i, Y = y_j] = P[X = x_i], P[Y = y_i]$$

Problems on Marginal distribution:

1. The joint probability marginal function of X , Y is given by P(xy) = K(2x+3y), x = 0, 1, 2 , y = 1, 2, 3 find K. Find all the marginal distribution and conditional probability distribution . Also probability distribution X + Y.

OBSERVE OPTIMIZE OUTSPRE

Solution:

Marginal distribution

		AAM MAMYAN	
X	0	1	2
P(X)	$-\frac{18}{72}$	OPTIMIZE OUTS	30 72

E.

Y	1	2	3
P(Y)	15 72	24 72	$\frac{33}{72}$

Conditional distribution at x given y

$$P[X = 0/Y = 1] = \frac{P[X = 0, Y = 1]}{P[Y = 1]} = \frac{3/72}{15/72} = \frac{1}{5}$$

$$P[X = 2/Y = 2] = \frac{P[X = 2, Y = 2]}{P[Y = 2]} = \frac{6/72}{24/72} = \frac{1}{4}$$

$$P[X = 0/Y = 3] = \frac{P[X = 0, Y = 3]}{P[Y = 3]} = \frac{9/72}{33/72} = \frac{3}{11}$$

$$P[X = 1/Y = 1] = \frac{P[X = 1, Y = 2]}{P[Y = 1]} = \frac{\frac{5}{72}}{\frac{15}{72}} = \frac{1}{3}$$

$$P[X = 1/Y = 2] = \frac{P[X = 1, Y = 2]}{P[Y = 2]} = \frac{\frac{8}{72}}{\frac{24}{72}} = \frac{1}{3}$$

$$P[X = 1/Y = 3] = \frac{P[X = 1, Y = 3]}{P[Y = 3]} = \frac{11/72}{33/72} = \frac{1}{3}$$

$$P[X = 2/Y = 1] = \frac{P[X = 2, Y = 1]}{P[Y = 1]} = \frac{\frac{7}{72}}{\frac{15}{72}} = \frac{7}{15}$$

$$P[X = 2/Y = 2] = \frac{P[X = 2, Y = 2]}{P[Y = 2]} = \frac{\frac{10}{72}}{\frac{24}{72}} = \frac{5}{12}$$

$$P[X = 2/Y = 3] = \frac{P[X = 2, Y = 3]}{P[Y = 3]} = \frac{\frac{13}{72}}{\frac{33}{72}} = \frac{13}{33}$$

Conditional distribution at y given x

$$P[Y = 1/X = 0] = \frac{P[Y = 1, X = 0]}{P[X = 0]} = \frac{\frac{3}{72}}{\frac{18}{72}} = \frac{1}{6}$$

$$P[Y = 1/X = 1] = \frac{P[Y = 1, X = 1]}{P[X = 1]} = \frac{\frac{5}{72}}{\frac{24}{72}} = \frac{5}{24}$$

$$P[Y = 1/X = 2] = \frac{P[Y = 1, X = 2]}{P[X = 2]} = \frac{7/72}{30/72} = \frac{7}{30}$$

$$P[Y = 2/X = 0] = \frac{P[Y = 2, X = 0]}{P[X = 0]} = \frac{\frac{6}{72}}{\frac{18}{72}} \equiv \frac{1}{3}$$

$$P[Y = 2/X = 1] = \frac{P[Y = 2, X = 1]}{P[X = 1]} = \frac{\frac{8}{72}}{\frac{24}{72}} = \frac{1}{3}$$

$$P[Y = 2/X = 2] = \frac{P[Y = 2, X = 2]}{P[X = 2]} = \frac{\frac{10}{72}}{\frac{30}{72}} = \frac{1}{3}$$

$$P[Y = 3/X = 0] = \frac{P[Y = 3, X = 0]}{P[X = 0]} = \frac{\frac{9}{72}}{\frac{18}{72}} = \frac{1}{2}$$

$$P[Y = 3/X = 1] = \frac{P[Y = 3, X = 1]}{P[X = 1]} = \frac{\frac{11}{72}}{\frac{24}{72}} = \frac{12}{24}$$

$$P[Y = 3/X = 2] = \frac{P[Y = 3, X = 2]}{P[X = 2]} = \frac{\frac{13}{72}}{\frac{30}{72}} = \frac{13}{30}$$

Distribution of $x + y_{y}$

DSERVE OPTIMIZE OUTSPREN			
	P ₀₁	3/72	
2	$P_{02} + P_{11}$	$^{11}/_{72}$	
3	$P_{03} + P_{12} + P_{21}$	²⁴ / ₇₂	
4	$P_{13} + P_{22}$	²¹ / ₇₂	

5	P ₂₃	¹³ / ₇₂

- 2. The joint distribution of X and Y is given by $f(x, y) = \frac{x+y}{21}$, x = 1, 2, 3; y =2. The joint ______ 1, 2. Find the marginal distributions. NEER/VG

The marginal distributions are given in the table.

		X			$P_Y(y) = P(Y = y)$
		1	2	3	
Y	1	$ \frac{2}{21} $ P(1,1)	$\frac{3}{21}$ P(2,1)	4 21 P(3,1)	$\frac{9}{21}$
	2	$ \frac{3}{21} $ P(1,2)	$\frac{GN^{4}EER}{P(2,2)}$	5 P(3,2)	$ \frac{12}{21} P(1,1) $
$P_X(x) = P(x)$) $X = x$)		$\frac{7}{21}$	9 21	1

The marginal distribution of X

$$P_X(1) = P(X = 1) = \frac{5}{21}, P_X(2) = P(X = 2) = \frac{7}{21}, P_X(3) = P(X = 3) = \frac{9}{21}$$

The marginal distribution of Y

$$P_Y(1) = P(Y = 1) = \frac{9}{21}, \quad P_Y(2) = P(Y = 2) = \frac{12}{21}$$

OBSERVE OPTIMIZE OUTSPREAD