
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

3.5.Strings: string slices, immutability, string functions and methods, string

module, Lists as arrays

A string is a sequence of characters. We can access the characters one at a time with the bracket

operator:

The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an index. The index indicates which character in the

sequence is required .To print the character we use

For most people, the first letter of 'banana' is b, not a. But for computer scientists,
the index is an offset from the beginning of the string, and the offset of the first letter is
zero.

So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th letter (“one-eth”), and n is

the 2th(“two-eth”) letter.

We can use any expression, including variables and operators, as an index, but the

value of the index has to be an integer. Otherwise the result will be :

>>> fruit = 'banana'
>>> letter = fruit[1]

>>> print letter
a

>>> letter = fruit[0]
>>> print letter
b

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

>>> letter = fruit[1.5]

TypeError: string indices must be integers, not float

Len()

len is a built-in function that returns the number of characters in a string:

To get the last letter of a string, you might be tempted to try something like this:

The reason for the IndexError is that there is no letter in 'banana' with the index 6. Since
we started counting at zero, the six letters are numbered 0 to 5. To get the last character, you
have to subtract 1 from length:

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so
on.

String Slices:

 A segment of a string is called a slice. Selecting a slice is similar to selecting a character.

Syntax:

 variable [start:stop]

 <String_name> [start:stop]

>>> fruit = 'banana'
>>> len(fruit)
6

>>> last = fruit[length-1]
>>> print last
a

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Example

Char a= “B A N A N A”

Index from Left 0 1 2 3 4 5

Index from Right -6 -5 -4 -3 -2 -1

>>>print(a[0]) prints B #Prints B Alone 0th Position

>>>print(a[5]) prints A #Prints A Alone Last Position

>>>print(a[-4]) print N #Print From Backwards -4th Position

>>>a[:] 'BANANA' #Prints All

>>>print(a[1:4]) print ANA #Print from 1st Position to 4th Position

>>> print(a[1:-2]) ANA #Prints from 1st position to -3th Position

Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention
of changing a character in a string. For example:

It is tempting to use the [] operator on the left side of an assignment, with the intention
of changing a character in a string. For example:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: 'str' object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later. An item
is one of the values in a sequence.

The reason for the error is that strings are immutable, which means we can’t change an
existing string. The best we can do is create a new string that is a variation on the original:

>>> greeting = 'Hello, world!'
>>> new_greeting = 'J' + greeting[1:]
>>> print new_greeting
Jello, world!

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

This example concatenates a new first letter onto a slice of greeting. It has no effect
on the original string.

String methods

A method is similar to a function—it takes arguments and returns a value—but the syntax
is different. For example, the method upper takes a string and returns a new string with
all uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax word.upper().

 This form of dot notation specifies the name of the method, upper, and the
name of the string to apply the method to, word. The empty parentheses indicate that this
method takes no argument.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

As it turns out, there is a string method named find that is remarkably similar to
the function we wrote:

 ‘In this example, we invoke find on word and pass the letter we are looking
for as a parameter.

Actually, the find method is more general than our function; it can find substrings, not
just characters:

It can take as a second argument the index where it should start:

>>> word = 'banana'
>>> new_word =
word.upper()

>>> print new_word
BANANA

>>> word = 'banana'
>>> index = word.find('a')
>>> print index
1

>>> word.find('na')

2

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

 And as a third argument the index where it should stop:

This search fails because b does not appear in the index range from 1 to 2 (not including 2).

String methods &Descriptions

S.No Method Syntax Description Example

1. len() len(String) Returns the length of the String len(a) 5

2.

centre() centre(width,fullchar)

The String will be centred along

with the width specified and

the charecters will fill the space

a.centre(20,+)

++++Hello++++

3.
lower() String.lower()

Converts all upper case into

lower case
b.lower() hello

4.
upper() String.upper()

Converts all lower case into

upper case
a.upper() HELLO

5.
capitalize() String.capitalize()

It converts the first letter into

capital

b.capitalize()

HELLO

6.

split() String.split(“Char”)

splits according to the character

which is present inside the

function

c.split(“+”)

1+2+3+4+5

7.
join() String1.join(String2)

It concatenates the string with

the sequence

a.join(b)

Hello hELLO

8.

isalnum() String.isalnum()

It checks the string is alpha

numeric or not. If the string

contains 1 or more

alphanumeric characters it

returns 1, else its returns 0

d=”a-b”

d.isalnum()

returns 1

>>> word.find('na', 3)
4

>>> name = 'bob'
>>> name.find('b', 1, 2)
-1

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

9.

isalpha() String.isalpha()

Returns true if it has at least 1

or more alphabet characters,

else it return false

b.isalpha()

returns 1

10.

isdigit() String.isdigit()

Returns true if it has at least 1

or more digits, else it return

false

b.isdigit() returns

0

11.

islower() String.islower()

Returns true if the string has at

least 1 or more Lower case

characters, else it return false

b.islower()

returns 1

12.

isupper() String.isupper()

Returns true if the string has at

least 1 or more Upper case

characters, else it return false

b.isupper()

returns 1

13.

isnumeric() String.isnumeric()

Returns true if the string

contains only numeric

character or false otherwise

a.isnumeric()

returns 0

14.

isspace() String.isspace()

Returns true if the string

contains only wide space

character or false otherwise

a.isspace()

returns 0

e=”a b” ;

e.isspace()

returns 1

15.

istitle() String.istitle()

Returns true if the string is

properly titled or false

otherwise

d=”Hello How R U”

d.istitle() returns

1

16.

isdecimal() String.isdecimal()

Returns true if the string

contains decimal value or false

otherwise

c.isdecimal()

returns 0

17.

title() String.title()

Returns title cased, all the

characters begin with upper

case

d=”hello how h u”

d.title() ”Hello

How R U”

18.

find()
String.find(String,

start,end)

If the string is found it returns

index position or it returns -1

a.find(“He”,0,4)

returns 1 (index

position)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

19.

endswith()
String.endswith(“text”

, beg, end)

The string will check for

whether the character is ending

with the specified character. If

it found it returns true, else

false

a.endswith(i,0)

returns false

20.

index()
String.index(‘text’,beg

, end)

It is same as find(). but it raises

exception when the string is not

found

a.index(‘i’,0)

returns 1

21.
count()

String.count(‘text’,beg

, end)

It counts howmany times a

string appears

a.count(‘i’,0)

returns 2

22.
rfind()

String.rfind(‘text’,beg,

end)
It finds a string from right to left a.rfind(‘i’) -1

23.
rindex()

String.rindex(‘text’,be

g, end)

Same as index() but moves from

right to left

a.rindex(‘l’,0)

returns 3

24.
rjust()

String.rjust(width,str,fi

llchar)

It will justify the character into

right and fill with the character

a.rjust(10,a,’-‘)

-----Hello

25.
ljust()

String.ljust(width,str,fi

llchar)

It will justify the character into

left and fill with the character

a.ljust(10,a,’+‘)

Hello+++++

26.
rstrip() rstrip()

It removes all the spaces at the

end

rstrip(a) it

returns -1

27.
startswith()

startswith(text, beg,

end)

It checks whether the character

starts with the specified one

a.stratswith(H,0)

returns true

Strings Modules:

 This module contains a number of functions to process standard python strings.

Using import string’ we can invoke string functions.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Example: Using the string module

import string

text = "Monty Python's Flying Circus"

print "upper", "=>", string.upper(text)

print "lower", "=>", string.lower(text)

print "split", "=>", string.split(text)

print "join", "=>", string.join(string.split(text), "+")

print "replace", "=>", string.replace(text, "Python", "Java")

print "find", "=>", string.find(text, "Python"), string.find(text, "Java")

print "count", "=>", string.count(text, "n")

Output:

upper => MONTY PYTHON'S FLYING CIRCUS

lower => monty python's flying circus

split => ['Monty', "Python's", 'Flying', 'Circus']

join => Monty+Python's+Flying+Circus

replace => Monty Java's Flying Circus

find => 6 -1

count => 3

The in Operator

The word in is a boolean operator that takes two strings and returns True if the first appears as

a substring in the second:

>>> 't' in 'python'

True

>>> 'jan' in 'python'

False

For example, the following function prints all the letters from word1 that also appear in word2:

def in_both(word1, word2):

for letter in word1:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

if letter in word2:

print(letter)

>>> in_both('django','mongodb')

d

n

g

o

 List as Array

To store such data, in Python uses the data structure called list (in most programming

languages the different term is used — “array”).

Arrays are sequence types and like lists, except that the type of objects stored in them is

constrained.

A list (array) is a set of objects.

 Individual objects can be accessed using ordered indexes that represent the position of each

object within the list (array).

The list can be set manually by enumerating of the elements the list in squarebrackets, like here:

Primes = [2, 3, 5, 7, 11, 13]

Rainbow = ['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet']

The list Primes has 6 elements, namely: Primes[0] == 2, Primes[1] == 3,

Primes[2] == 5, Primes[3] == 7,Primes[4] == 11, Primes[5] == 13.

The list Rainbow has 7 elements, each of which is the string.

Like the characters in the string, the list elements can also have negative index, for example,

Primes[-1] == 13,Primes[-6] == 2.

Several ways of creating and reading lists.

 First of all, we can create an empty list and can add items to the end of list using append.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Example

 a = [] # start an empty list

n = int(input('Enter No of Elements')) # read number of element in the list

for i in range(n):

new_element = int(input('Enter Element :')) # read next element

a.append(new_element) # add it to the list

one: # the last two lines could be replaced by

print(a) # a.append(int(input('Enter Element :')))

Result

Enter No of Elements5

Enter Element :2

Enter Element :7

Enter Element :4

Enter Element :3

Enter Element :8

[2, 7, 4, 3, 8]

