
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392-OBJECT ORIENTED PROGRAMMING

2.1 OBJECT CLONING

Object cloning refers to creation of exact copy of an object. It creates a new instance of

the class of current object and initializes all its fields with exactly the contents of the

corresponding fields of this object. In Java, there is no operator to create copy of an

object. Unlike C++, in Java, if we use assignment operator then it will create a copy of

reference variable and not the object. This can be explained by taking an example.

Following program demonstrates the same.

// Java program to demonstrate that assignment operator creates a new reference to same

object.

import

java.io.*; class

sample

{

int a;

float b;

sample()

{

a = 10;

b = 20;

}

}

class Mainclass

{

public static void main(String[] args)

{

sample ob1 = new sample();

System.out.println(ob1.a + “ “ +

ob1.b); sample ob2 = ob1;

ob2.a = 100;

System.out.println(ob1.a+”

“+ob1.b); System.out.println(ob2.a+”

“+ob2.b);

}

}

Output:

10 20.0

100 20.0

100 20.0

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392-OBJECT ORIENTED PROGRAMMING

Creating a copy using clone() method

The class whose object’s copy is to be made must have a public clone method in it or

in one of its parent class.

• Every class that implements clone() should call super.clone() to obtain the

cloned

object reference.

• The class must also implement java.lang.Cloneable interface whose object

clone we want to create otherwise it will throw CloneNotSupportedException

when clone method is called on that class’s object.

Syntax:

protected Object clone() throws CloneNotSupportedException

import ava.util.ArrayList;

 class sample1

{

int a, b;

}

class sample2 implements Cloneable

{

int

c; int

d;

sample1 s = new sample1();

public Object clone() throws CloneNotSupportedException

{

return super.clone();

}

}

public class Mainclass

{

public static void main(String args[]) throws CloneNotSupportedException

{

sample2 ob1 = new

sample2(); ob1.c = 10;

ob1.d = 20;

ob1.s.a = 30;

ob1.s.b = 40;

sample2 ob2 = (sample2)ob1.clone();

ob2.d = 100; //Change in primitive type of ob2 will not be reflected in ob1 field

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392-OBJECT ORIENTED PROGRAMMING

ob2.s.a = 300; //Change in object type field will be reflected in both ob2

and ob1(shallow copy)

System.out.println(ob1.c + “ “ + ob1.d + “ “ +ob1.s.a + “ “ + ob1.s.b);

System.out.println(ob2.c + “ “ + ob2.d + “ “ +ob2.s.a + “ “ + ob2.s.b);

}

}

Types of Object cloning

1. Deep Copy

2. Shallow Copy

Shallow copy

Shallow copy is method of copying an object. It is the default in cloning. In this method

the fields of an old object ob1 are copied to the new object ob2. While copying the object type

field the reference is copied to ob2 i.e. object ob2 will point to same location as pointed out

by ob1. If the field value is a primitive type it copies the value of the primitive type. So, any

changes made in referenced objects will be reflected in other object.

Note:

Shallow copies are cheap and simple to make.

Deep Copy

To create a deep copy of object ob1 and place it in a new object ob2 then new

copy of any referenced objects fields are created and these references are placed in

object ob2. This means any changes made in referenced object fields in object ob1 or

ob2 will be reflected only in that object and not in the other. A deep copy copies all

fields, and makes copies of dynamically allocated memory pointed to by the fields. A

deep copy occurs when an object is copied along with the objects to which it refers.

//Java program for deep copy using

clone()

import java.util.ArrayList;

class Test

{

int a, b;

}

class Test2 implements Cloneable

{

int c, d;

Test ob1 = new Test();

public Object clone() throws CloneNotSupportedException

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392-OBJECT ORIENTED PROGRAMMING

// Assign the shallow copy to new refernce variable t

Test2 t1 = (Test2)super.clone();

t1.ob1 = new Test();

// Create a new object for the field c

// and assign it to shallow copy obtained,

// to make it a deep copy

return t1;

}

}

public class Main

{

}

Output

public static void main(String args[]) throws CloneNotSupportedException

{

Test2 t2 = new Test2();

t2.c = 10;

t2.d = 20;

t2.ob1.a = 30;

t2.ob1.b = 40;

Test2 t3 =

(Test2)t2.clone(); t3.c =

100;

t3.ob1.a = 300;

System.out.println (t2.c + “ “ + t2.d + “ “ + t2.ob1.a + “ “ + t2.ob1.b);

System.out.println (t3.c + “ “ + t3.d + “ “ + t3.ob1.a + “ “ + t3.ob1.b);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392-OBJECT ORIENTED PROGRAMMING

10 20 30 40

100 20 300 0

Advantages of clone method:

• If we use assignment operator to assign an object reference to another reference

variable then it will point to same address location of the old object and no new copy of

the object will be created. Due to this any changes in reference variable will be

reflected in original object.

• If we use copy constructor, then we have to copy all of the data over explicitly i.e. we

have to reassign all the fields of the class in constructor explicitly. But in clone method

this work of creating a new copy is done by the method itself. So to avoid extra

processing we use object cloning.

