CONFORMAL MAPPING-MAPPING BY FUNCTIONS

Definition: Conformal Mapping

A transformation that preserves angels between every pair of curves through a point, both in magnitude and sense, is said to be conformal at that point.

Some standard transformations

Translation:

The transformation $w=C+z$, where C is a complex constant, represents a translation.
Let $z=x+i y$

$$
w=u+i v \text { and } C=a+i b
$$

Given $w=z+C$,
(i.e.) $u+i v=x+i y+a+i b$
$\Rightarrow u+i v=(x+a)+i(y+b)$
Equating the real and imaginary parts, we get $u=x+a, v=y+b$
Hence the image of any point $p(x, y)$ in the z-plane is mapped onto the point $p^{\prime}(x+$ $a, y+b)$ in the w-plane. Similarly every point in the z -plane is mapped onto the w plane.

If we assume that the w-plane is super imposed on the z -plane, we observe that the point (x, y) and hence any figure is shifted by a distance $|C|=\sqrt{a^{2}+b^{2}}$ in the direction of C i.e., translated by the vector representing C .

Hence this transformation transforms a circle into an equal circle. Also the corresponding regions in the z and w planes will have the same shape, size and orientation.

Example: What is the region of the w plane into which the rectangular region in the \mathbf{Z} plane bounded by the lines $x=0, y=0, x=1$ and $y=2$ is mapped under the transformation $\mathbf{w}=\mathrm{z}+(2 \mathbf{i})$

Solution:

Given $w=z+(2-i)$
(i.e.) $u+i v=x+i y+(2-i)=(x+2)+i(y-1)$

Equating the real and imaginary parts

$$
u=x+2, v=y-1
$$

Given boundary lines are

$$
\begin{gathered}
x=0 \\
y=0 \\
x=1 \\
y=2
\end{gathered}
$$

transformed boundary lines are

$$
\begin{aligned}
& u=0+2=2 \\
& v=0-1=-1 \\
& u=1+2=3 \\
& v=2-1=1
\end{aligned}
$$

Hence, the lines $x=0, y=0, x=1$, and $y=2$ are mapped into the lines $u=2, v=-1$, $u=3$, and $v=1$ respectively which form a rectangle in the w plane.

Example: Find the image of the circle $|z|=1$ by the transformation $w=z+2+4 i$

Solution:

Given $w=z+2+4 i$

$$
\text { (i.e.) } \begin{array}{r}
u+i v=x+i y+2+4 i \\
=(x+2)+i(y+4)
\end{array}
$$

Equating the real and imaginary parts, we get

$$
\begin{gathered}
u=x+2, v=y+4 \\
x=u-2, y=v-4
\end{gathered}
$$

Given $|z|=1$

$$
\begin{aligned}
& \text { (i.e.) } x^{2}+y^{2}=1 \\
& (u-2)^{2}+(v-4)^{2}=1
\end{aligned}
$$

Hence, the circle $x^{2}+y^{2}=1$ is mapped into $(u-2)^{2}+(v-4)^{2}=1$ in w plane which is also a circle with centre $(2,4)$ and radius 1 .

2. Magnification and Rotation

The transformation $w=c z$, where c is a complex constant, represents both magnification and rotation.

This means that the magnitude of the vector representing z is magnified by $a=|c|$ and its direction is rotated through angle $\alpha=\operatorname{amp}(c)$. Hence the transformation consists of a magnification and a rotation.
Example: Determine the region ' D ' of the w-plane into which the triangular region D enclosed by the lines $x=0, y=0, x+y=1$ is transformed under the transformation $w=2 z$.

Solution:

$$
\text { Let } w=u+i v
$$

$$
z=x+i y
$$

Given $\quad w=2 z$

$$
\begin{gathered}
u+i v=2(x+i y) \\
u+i v=2 x+i 2 y \\
u=2 x \Rightarrow x=\frac{u}{2}, v=2 y \Rightarrow y=\frac{v}{2}
\end{gathered}
$$

Given region (D) whose boundary lines are	Transformed region D^{\prime} whose boundary lines are	
$x=0$	\Rightarrow	$u=0$
$y=0$	\Rightarrow	$v=0$
$x+y=1$	\Rightarrow	$\frac{u}{2}+\frac{v}{2}=1\left[\because x=\frac{u}{2}, y=\frac{v}{2}\right]$ (i.e.) $u+v=2$

In the z plane the line $x=0$ is transformed into $u=0$ in the w plane.
In the z plane the line $y=0$ is transformed into $v=0$ in the w plane.

In the z plane the line $x+y=$ is transformed into $u+v=2$
in the w plane.

z-plane

w-plane

Example: Find the image of the circle $|z|=\lambda$ under the transformation $\boldsymbol{w}=\mathbf{5 z}$.

Solution:

Given $w=5 z$

$$
\begin{gathered}
|w|=5|z| \\
\text { i.e., }|w|=5 \lambda \quad[\because|z|=\lambda]
\end{gathered}
$$

Hence, the image of $|z|=\lambda$ in the z plane is transformed into $|w|=5 \lambda$ in the w plane under the transformation $w=5 z$.

Example: Find the image of the circle $|z|=3$ under the transformation $w=2 z$

Solution:

$$
\begin{aligned}
& \text { Given } \begin{aligned}
& w=2 z, \quad|z|=3 \\
&|w|=(2)|z| \\
&=(2)(3), \quad \text { Since }|z|=3 \\
&=6
\end{aligned}
\end{aligned}
$$

Hence, the image of $|z|=3$ in the z plane is transformed into $|w|=6 w$ plane under the transformation $w=2 z$.

Example: Find the image of the region $y>1$ under the transformation

$$
w=(1-i) z .
$$

Solution:

$$
\begin{aligned}
& \text { Given } \begin{aligned}
& w=(1-i) z . \\
& \qquad \begin{aligned}
u+v= & (1-i)(x+i y) \\
= & x+i y-i x+y \\
& =(x+y)+i(y-x)
\end{aligned} \\
& \text { i. e., } u=x+y, \quad v=y-x \\
& u+v=2 y \quad u-v=2 x
\end{aligned}
\end{aligned}
$$

$$
y=\frac{u+v}{2} \quad x=\frac{u-v}{2}
$$

Hence, image region $y>1$ is $\frac{u+v}{2}>1$ i.e., $u+v>2$ in the w plane.

3. Inversion and Reflection

The transformation $w=\frac{1}{z}$ represents inversion w.r.to the unit circle $|z|=1$, followed by reflection in the real axis.

$$
\begin{align*}
& \Rightarrow w=\frac{1}{z} \\
& \Rightarrow z=\frac{1}{w} \\
& \Rightarrow x+i y=\frac{1}{u+i v} \\
& \Rightarrow x+i y=\frac{1}{u^{2}+v^{2}} \\
& \Rightarrow x=\frac{1}{u^{2}+v^{2}} \tag{1}\\
& \Rightarrow y=\frac{-v}{u^{2}+v^{2}} \tag{2}
\end{align*}
$$

We know that, the general equation of circle in z plane is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{3}
\end{equation*}
$$

Substitute, (1) and (2) in (3)we get

$$
\begin{align*}
& \frac{u^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{v^{2}}{\left(u^{2}+v^{2}\right)^{2}}+2 g\left(\frac{u}{u^{2}+v^{2}}\right)+2 f\left(\frac{-v}{u^{2}+v^{2}}\right)+c=0 \\
& \Rightarrow c\left(u^{2}+v^{2}\right)+2 g u-2 f v+1=0 \tag{4}
\end{align*}
$$

which is the equation of the circle in w plane
Hence, under the transformation $w=\frac{1}{z}$ a circle in z plane transforms to another circle in the w plane. When the circle passes through the origin we have $c=0$ in (3). When $c=0$, equation (4) gives a straight line.

Example: Find the image of $|z-2 i|=2$ under the transformation $w=\frac{1}{z}$

Solution:

Given $|z-2 i|=2 \ldots .(1)$ is a circle.

$$
\begin{aligned}
\text { Centre } & =(0,2) \\
\text { radius } & =2
\end{aligned}
$$

Given $w=\frac{1}{z}=>z=\frac{1}{w}$
(1) $\quad \Rightarrow\left|\frac{1}{w}-2 i\right|=2$

$$
\begin{aligned}
& \Rightarrow|1-2 w i|=2|w| \\
& \Rightarrow|1-2(u+i v) i|=2|u+i v|
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow|1-2 u i+2 v|=2|u+i v| \\
& \Rightarrow|1+2 v-2 u i|=2|u+i v| \\
& \Rightarrow \sqrt{(1+2 v)^{2}+(-2 u)^{2}}=2 \sqrt{u^{2}+v^{2}} \\
& \Rightarrow(1+2 v)^{2}+4 u^{2}=4\left(u^{2}+v^{2}\right) \\
& \Rightarrow 1+4 v^{2}+4 v+4 u^{2}=4\left(u^{2}+v^{2}\right) \\
& \Rightarrow 1+4 v=0 \\
& \Rightarrow v=-\frac{1}{4}
\end{aligned}
$$

Which is a straight line in w plane.

Example: Find the image of the circle $|z-1|=1$ in the complex plane under the mapping $w=\frac{1}{z}$

Solution:

Given $|z-1|=1 \ldots .(1)$ is a circle.
Centre $=(1,0)$

$$
\text { radius }=1
$$

Given $w=\frac{1}{z} \Rightarrow z=\frac{1}{w}$
(1) $\quad \Rightarrow\left|\frac{1}{w}-1\right|=1$

$$
\begin{aligned}
& \Rightarrow|1-w|=|w| \\
& \Rightarrow|1-(u+i v)|=|u+i v|
\end{aligned}
$$

$$
\Rightarrow|1-u+i v|=|u+i v|
$$

$$
\Rightarrow \sqrt{(1-u)^{2}+(-v)^{2}}=\sqrt{u^{2}+v^{2}}
$$

$$
\Rightarrow(1-u)^{2}+v^{2}=u^{2}+v^{2}
$$

$$
\Rightarrow 1+u^{2}-2 v+v^{2}=u^{2}+v^{2}
$$

$$
\Rightarrow 2 u=1
$$

$$
\Rightarrow u=\frac{1}{2}
$$

which is a straight line in the w - plane

z-plane

w-plane

Example: Find the image of the infinite strips

(i) $\frac{1}{4}<y<\frac{1}{2}$
(ii) $0<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$

Solution :
Given $w=\frac{1}{z}$ (given)

$$
\begin{align*}
& \text { i.e., } z=\frac{1}{w} \\
& z=\frac{1}{u+i v}=\frac{u-i v}{(u+i v)+(u-i v)}=\frac{u-i v}{u^{2}+v^{2}} \\
& x+i y=\frac{u-i v}{u^{2}+v^{2}}=\left[\frac{u}{u^{2}+v^{2}}\right]+i\left[\frac{-v}{u^{2}+v^{2}}\right] \\
& x=\frac{u}{u^{2}+v^{2}} \ldots \text { (1),y=} \frac{-v}{u^{2}+v^{2}} \ldots \text { (2) } \tag{2}
\end{align*}
$$

(i) Given strip is $\frac{1}{4}<y<\frac{1}{2}$
when $y=\frac{1}{4}$

$$
\begin{aligned}
& \frac{1}{4}=\frac{-v}{u^{2}+v^{2}} \\
\Rightarrow & u^{2}+v^{2}=-4 v \\
\Rightarrow & u^{2}+v^{2}+4 v=0 \\
\Rightarrow & u^{2}+(v+2)^{2}=4
\end{aligned}
$$

which is a circle whose centre is at $(0,-2)$ in the w plane and radius is 2 k .
when $y=\frac{1}{2}$

$$
\begin{aligned}
& \quad \frac{1}{2}=\frac{-v}{u^{2}+v^{2}} \\
& \Rightarrow u^{2}+v^{2}=-2 v \\
& \Rightarrow u^{2}+v^{2}+2 v=0 \\
& \Rightarrow u^{2}+(v+1)^{2}=0
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow u^{2}+(v+1)^{2}=1 \tag{3}
\end{equation*}
$$

which is a circle whose centre is at $(0,-1)$ in the w plane and unit radius Hence the infinite strip $\frac{1}{4}<y<\frac{1}{2}$ is transformed into the region in between circles $u^{2}+$ $(v+1)^{2}=1$ and $u^{2}+(v+2)^{2}=4$ in the w plane.

ii) Given strip is $0<y<\frac{1}{2}$
when $y=0$
$\Rightarrow v=0$
by
(2)
when $y=\frac{1}{2}$ we get $u^{2}+(v+1)^{2}=1$ by (3)

Hence, the infinite strip $0<y<\frac{1}{2}$ is mapped into the region outside the circle $u^{2}+$ $(v+1)^{2}=1$ in the lower half of the w plane.

Example: Find the image of $x=2$ under the transformation $w=\frac{1}{z}$.

Solution:

$$
\begin{array}{r}
\text { Given } w=\frac{1}{z} \\
\text { i.e., } z=\frac{1}{w}
\end{array}
$$

$$
\begin{align*}
& z=\frac{1}{u+i v}=\frac{u-i v}{(u+i v)+(u-i v)}=\frac{u-i v}{u^{2}+v^{2}} \\
& x+i y=\left[\frac{u}{u^{2}+v^{2}}\right]+i\left[\frac{-v}{u^{2}+v^{2}}\right] \\
& \text { i. e., } \quad x=\frac{u}{u^{2}+v^{2}} \ldots .(1), y=\frac{-v}{u^{2}+v^{2}} \tag{2}
\end{align*}
$$

Given $x=2$ in the z plane.

$$
\begin{aligned}
& \therefore 2=\frac{u}{u^{2}+v^{2}} \quad \text { by (1) } \\
& 2\left(u^{2}+v^{2}\right)=u \\
& u^{2}+v^{2}-\frac{1}{2} u=0
\end{aligned}
$$

which is a circle whose centre is $\left(\frac{1}{4}, 0\right)$ and radius $\frac{1}{4}$
$\therefore x=2$ in the z plane is transformed into a circle in the w plane.

Example: What will be the image of a circle containing the origin(i.e., circle passing

 through the origin) in the XY plane under the transformation $w=\frac{1}{z}$?
Solution:

$$
\begin{aligned}
& \text { Given } w=\frac{1}{z} \\
& \text { i.e., } z=\frac{1}{w} \\
& z=\frac{1}{u+i v}=\frac{u-i v}{(u+i v)+(u-i v)}=\frac{u-i v}{u^{2}+v^{2}} \\
& x+i y=\left[\frac{u}{u^{2}+v^{2}}\right]+i\left[\frac{-v}{u^{2}+v^{2}}\right] \\
& \text { i.e., } x=\frac{u}{u^{2}+v^{2}} \\
& y=\frac{-v}{u^{2}+v^{2}}
\end{aligned}
$$

Given region is circle $x^{2}+y^{2}=a^{2}$ in z plane.
Substitute, (1) and (2), we get

$$
\begin{aligned}
& -\left[\frac{u^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{v^{2}}{\left(u^{2}+v^{2}\right)^{2}}\right]=a^{2} \\
& {\left[\frac{u^{2}+v^{2}}{\left(u^{2}+v^{2}\right)^{2}}\right]=a^{2}} \\
& \frac{1}{\left(u^{2}+v^{2}\right)}=a^{2} \\
& u^{2}+v^{2}=\frac{1}{a^{2}}
\end{aligned}
$$

Therefore the image of circle passing through the origin in the $X Y$-plane is a circle passing through the origin in the w - plane.
Example: Determine the image of $1<x<2$ under the mapping $w=\frac{1}{z}$

Solution:

$$
\begin{align*}
& \text { Given } w=\frac{1}{z} \\
& \text { i.e., } z=\frac{1}{w} \\
& \qquad=\frac{1}{u+i v}=\frac{u-i v}{(u+i v)+(u-i v)}=\frac{u-i v}{u^{2}+v^{2}} \\
& x+i y=\left[\frac{u}{u^{2}+v^{2}}\right]+i\left[\frac{-v}{u^{2}+v^{2}}\right] \\
& \text { i.e., } \quad x=\frac{u}{u^{2}+v^{2}} \tag{2}
\end{align*}
$$

Given $1<x<2$
When $x=1$

$$
\begin{aligned}
& \Rightarrow 1=\frac{u}{u^{2}+v^{2}} \quad \text { by } \ldots(1) \\
& \Rightarrow u^{2}+v^{2}=u \\
& \Rightarrow u^{2}+v^{2}-u=0
\end{aligned}
$$

which is a circle whose centre is $\left(\frac{1}{2}, 0\right)$ and is $\frac{1}{2}$
When $x=2$

$$
\begin{aligned}
& \Rightarrow 2=\frac{u}{u^{2}+v^{2}} \\
& \Rightarrow u^{2}+v^{2}=\frac{u}{2} \\
& \Rightarrow u^{2}+v^{2}-\frac{u}{2}=0
\end{aligned}
$$

which is a circle whose centre is $\left(\frac{1}{4}, 0\right)$ and is $\frac{1}{4}$
Hence, the infinite strip $1<x<2$ is transformed into the region in between the circles in the w - plane.

4. Transformation $w=z^{2}$

Problems based on $w=z^{2}$

Example: Discuss the transformation $w=z^{2}$.

Solution:

Given $w=z^{2}$

$$
\begin{gather*}
u+i v=(x+i y)^{2}=x^{2}+(i y)^{2}+i 2 x y=x^{2}-y^{2}+i 2 x y \\
i . e ., u=x^{2}-y^{2} \tag{2}
\end{gather*}
$$

Elimination:

$$
\begin{aligned}
& \text { (2) } \Rightarrow x=\frac{v}{2 y} \\
& \text { (1) } \Rightarrow u=\left(\frac{v}{2 y}\right)^{2}-y^{2} \\
& \Rightarrow u=\frac{v^{2}}{4 y^{2}}-y^{2} \\
& \Rightarrow 4 u y^{2}=v^{2}-4 y^{4} \\
& \Rightarrow 4 u y^{2}+4 y^{4}=v^{2} \\
& \Rightarrow y^{2}\left[4 u+4 y^{2}\right]=v^{2} \\
& \Rightarrow 4 y^{2}\left[u+y^{2}\right]=v^{2} \\
&
\end{aligned} v^{2}=4 y^{2}\left(y^{2}+u\right) .
$$

when $\quad y=c(\neq 0)$, we get

$$
v^{2}=4 c^{2}\left(u+c^{2}\right)
$$

which is a parabola whose vertex at $\left(-c^{2}, 0\right)$ and focus at $(0,0)$
Hence, the lines parallel to X -axis in the z plane is mapped into family of confocal parabolas in the w plane.

$$
\text { when } y=0 \text {, we get } v^{2}=0 \text { i.e., } v=0, u=x^{2} \text { i.e., } u>0
$$

Hence, the line $y=0$, in the z plane are mapped into $v=0$, in the w plane.

Elimination:

(2) $\Rightarrow y=\frac{v}{2 x}$
(1) $\Rightarrow u=x^{2}-\left(\frac{v}{2 x}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow u=x^{2}-\frac{v^{2}}{4 x^{2}} \\
& \Rightarrow \frac{v^{2}}{4 x^{2}}=x^{2}-u \\
& \Rightarrow v^{2}=\left(4 x^{2}\right)\left(x^{2}-u\right)
\end{aligned}
$$

when $x=c(\neq 0)$, we get $v^{2}=4 c^{2}\left(c^{2}-u\right)=-4 c^{2}\left(u-c^{2}\right)$
which is a parabola whose vertex at $\left(c^{2}, 0\right)$ and focus at $(0,0)$ and axis lies along the u-axis and which is open to the left.

Hence, the lines parallel to y axis in the z plane are mapped into confocal parabolas in the w plane when $x=0$, we get $v^{2}=0$. i.e., $v=0, u=-y^{2}$ i.e., $u<0$
i.e., the map of the entire y axis in the negative part or the left half of the u-axis.

Example: Find the image of the hyperbola $x^{2}-y^{2}=10$ under the transformation $w=$ z^{2} if

$$
w=u+i v
$$

Solution:

Given $w=z^{2}$

$$
\begin{align*}
& u+i v=(x+i y)^{2} \tag{1}\\
& =x^{2}-y^{2}+i 2 x y \\
& \text { i.e. } u=x^{2}-y^{2} \ldots \ldots(1)
\end{aligned} \begin{aligned}
& v=2 x y
\end{align*}
$$

Given $x^{2}-y^{2}=10$

$$
\text { i.e., } u=10
$$

Hence, the image of the hyperbola $x^{2}-y^{2}=10$ in the z plane is mapped into $u=$ 10 in the w plane which is a straight line.

Example: Find the critical points of the transformation $\boldsymbol{w}^{2}=(z-\alpha)(z-\boldsymbol{\beta})$.

Solution:

$$
\begin{equation*}
\text { Given } w^{2}=(z-\alpha)(z-\beta) \tag{1}
\end{equation*}
$$

Critical points occur at $\frac{d w}{d z}=0$ and $\frac{d z}{d w}=0$
Differentiation of (1) w.r. to z, we get

$$
\begin{gather*}
\Rightarrow 2 w \frac{d w}{d z}=(z-\alpha)+(z-\beta) \\
=2 z-(\alpha+\beta) \\
\Rightarrow \frac{d w}{d z}=\frac{2 z-(\alpha+\beta)}{2 w} \tag{2}
\end{gather*}
$$

Case (i) $\frac{d w}{d z}=0$

$$
\begin{aligned}
& \Rightarrow \frac{2 z-(\alpha+\beta)}{2 w}=0 \\
& \Rightarrow 2 z-(\alpha+\beta)=0 \\
& \Rightarrow 2 z=\alpha+\beta
\end{aligned}
$$

$$
\Rightarrow z=\frac{\alpha+\beta}{2}
$$

Case (ii) $\frac{d z}{d w}=0$

$$
\begin{aligned}
& \Rightarrow \frac{2 w}{2 z-(\alpha+\beta)}=0 \\
& \Rightarrow \frac{w}{z-\frac{\alpha+\beta}{2}}=0 \\
& \Rightarrow w=0 \Rightarrow(z-\alpha)(z-\beta)=0 \\
& \Rightarrow z=\alpha, \beta
\end{aligned}
$$

\therefore The critical points are $\frac{\alpha+\beta}{2}, \alpha$ and β.
Example: Find the critical points of the transformation $w=z^{2}+\frac{1}{z^{2}}$.

Solution:

$$
\begin{equation*}
\text { Given } w=z^{2}+\frac{1}{z^{2}} \tag{1}
\end{equation*}
$$

Critical points occur at $\frac{d w}{d z}=0$ and $\frac{d z}{d w}=0$
Differentiation of (1) w. r. to Z, we get

$$
\Rightarrow \frac{d w}{d z}=2 z-\frac{2}{z^{3}}=\frac{2 z^{4}-2}{z^{3}}
$$

Case (i) $\frac{d w}{d z}=0$

$$
\begin{aligned}
\Rightarrow \frac{2 z^{4}-2}{z^{3}}=0 & \Rightarrow 2 z^{4}-2=0 \\
& \Rightarrow z^{4}-1=0 \\
& \Rightarrow z= \pm 1, \pm i
\end{aligned}
$$

Case (ii) $\frac{d z}{d w}=0$

$$
\Rightarrow \frac{z^{3}}{2 z^{4}-2}=0 \Rightarrow z^{3}=0 \Rightarrow z=0
$$

\therefore The critical points are $\pm 1, \pm i, 0$
Example: Prove that the transformation $w=\frac{z}{1-z}$ maps the upper half of the z plane into the upper half of the w plane. What is the image of the circle $|z|=1$ under this transformation.

Solution:

Given $|z|=1$ is a circle

$$
\begin{aligned}
& \text { Centre }=(0,0) \\
& \text { Radius }=1
\end{aligned}
$$

Given $w=\frac{z}{1-z}$

$$
\begin{aligned}
& \Rightarrow z=\frac{w}{w+1} \\
& \Rightarrow|z|=\left|\frac{w}{w+1}\right|=\frac{|w|}{|w+1|}
\end{aligned}
$$

Given $|z|=1$

$$
\begin{aligned}
& \Rightarrow \frac{|w|}{|w+1|}=1 \\
& \quad \Rightarrow|w|=|w+1| \\
& \quad \Rightarrow|u+i v|=|u+i v+1| \\
& \Rightarrow \sqrt{u^{2}+v^{2}}=\sqrt{(u+1)^{2}+v^{2}} \\
& \Rightarrow u^{2}+v^{2}=(u+1)^{2}+v^{2} \\
& \Rightarrow u^{2}+v^{2}=u^{2}+2 u+1+v^{2} \\
& \Rightarrow 0=2 u+1 \\
& \Rightarrow u=\frac{-1}{2}
\end{aligned}
$$

Further the region $|z|<1$ transforms into $u>\frac{-1}{2}$

