
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

INHERITANCE

➢ Inheritance is the mechanism in java by which one class is allow to inherit the

features of another class.

➢ It is process of deriving a new class from an existing class.

➢ A class that is inherited is called a superclass and the class that does the inheriting

is called a subclass.

➢ Inheritance represents the IS-A relationship, also known as parent child

relationship. The keyword used for inheritance is extends.

Syntax:

class Subclass-name extends Superclass-name

{

//methods and fields

}

Here, the extends keyword indicates that we are creating a new class that derives from an

existing class.

Note: The constructors of the superclass are never inherited by the subclass

Advantages of Inheritance:

• Code reusability - public methods of base class can be reused in derived classes

• Data hiding – private data of base class cannot be altered by derived class

• Overriding--With inheritance, we will be able to override the methods of the base

class in the derived class

Example:

// Create a superclass.

class BaseClass

{

int a=10,b=20;

public void add()

{

System.out.println(“Sum:”+(a+b));

}

}

public class Main extends BaseClass

{

public void sub()

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

System.out.println(“Difference:”+(a-b));

public static void main(String[] args)

{

 Main obj=new Main();

obj.add();

obj.sub();

}

}

Sample Output:

Sum:30

Difference:-10

Types of inheritance

Single Inheritance :

In single inheritance, a subclass inherit the features of one superclass.

Example:

class Shape{

int a=10,b=20;

}

class Rectangle extends Shape{

public void rectArea(){

System.out.println(“Rectangle Area:”+(a*b));

public class Main

{

public static void main(String[] args) {

Rectangle obj=new Rectangle();

obj.rectArea();

}}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

Multilevel Inheritance:

In Multilevel Inheritance, a derived class will be inheriting a base class and as well as the

derived class also act as the base class to other class i.e. a derived class in turn acts as a base

class for another class.

Example:

class Numbers{

int a=10,b=20;

}

class Add2 extends Numbers{

int c=30;

public void sum2(){

System.out.println(“Sum of 2 nos.:”+(a+b));

}

}

class Add3 extends Add2{

public void sum3(){

System.out.println(“Sum of 3 nos.:”+(a+b+c));

}

}

public class Main

{

public static void main(String[] args) {

Add3 obj=new Add3();

obj.sum2();

obj.sum3();

}

}

Sample Output: Sum

of 2 nos.:30 Sum of

3 nos.:60

Hierarchical Inheritance:

In Hierarchical Inheritance, one class serves as a superclass (base class) for more than

one sub class.

Example:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

class Shape{

int a=10,b=20;

}

class Rectangle extends Shape{

public void rectArea(){

System.out.println(“Rectangle Area:”+(a*b));

}

}

class Triangle extends Shape{

public void triArea(){

System.out.println(“Triangle Area:”+(0.5*a*b));

}

}

public class Main

{

public static void main(String[] args) {

Rectangle obj=new Rectangle();

obj.rectArea();

Triangle obj1=new Triangle();

obj1.triArea();

}

}

Sample Output: Rectangle

Area:200 Triangle

Area:100.0

Multiple inheritance

Java does not allow multiple inheritance:

• To reduce the complexity and simplify the language

• To avoid the ambiguity caused by multiple inheritance

For example, Consider a class C derived from two base classes A and B. Class C inherits A

and B features. If A and B have a method with same signature, there will be ambiguity to call

method of A or B class. It will result in compile time error.

class A{

void msg(){System.out.println(“Class A”);}

}

class B{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

void msg(){System.out.println(“Class B “);}

}

class C extends A,B{//suppose if it were

Public Static void main(String args[]){ C

obj=new C();

obj.msg();//Now which msg() method would be invoked?

}

}

Sample Output:

Compile time error

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable

using Interfaces. The concept about interface is discussed in chapter.2.7.

Access Control in Inheritance

The following rules for inherited methods are enforced −

• Variables declared public or protected in a superclass are inheritable in subclasses.

• Variables or Methods declared private in a superclass are not inherited at all.

• Methods declared public in a superclass also must be public in all subclasses.

• Methods declared protected in a superclass must either be protected or public in

subclasses; they cannot be private.

Example:

// Create a superclass

class A{

int x; // default specifier

private int y; // private to A

public void set_xy(int a,int b){

x=a;

y=b;

}

}

// A’s y is not accessible here.

class B extends A{

public void add(){

System.out.println(“Sum:”+(x+y)); //Error: y has private access in A – not inheritable

}

}

class Main{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8392 OBJECT ORIENTED PROGRAMMING

public static void main(String args[]){ B

obj=new B();

obj.set_xy(10,20);

obj.add();

}

}

In this example since y is declared as private, it is only accessible by its own class mem-

bers. Subclasses have no access to it.

