3.1. DISCRETE FOURIER TRANSFORM

The discrete Fourier transform converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform, which is a complex-valued function of frequency.

The N point DFT of $\mathrm{x}(\mathrm{n})$ can be expressed as

$$
\mathrm{X}(\mathrm{~K})=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}(\mathrm{n}) \mathrm{e}^{\frac{-\mathrm{j} 2 \pi \mathrm{kn}}{\mathrm{~N}}}
$$

For $\mathrm{k}=0,1,2 \ldots \mathrm{~N}-1$

Example-1

Compute the DFT of the sequence is given by

$$
x(n)=\{0,1,2,1\}
$$

Soln:

$$
X(K)=\sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

The given signal $x(n)$ is 4 point signal. Let us compute 4 point DFT.
$X(K)=\sum_{n=0}^{4-1} x(n) e^{\frac{-j 2 \pi k n}{4}}$
$=\sum_{n=0}^{3} x(n) e^{\frac{-j \pi k n}{2}}$
$=\mathrm{x}(0) e^{0}+\mathrm{x}(1) e^{\frac{-j \pi k}{2}}+\mathrm{x}(2) e^{-j \pi k}+\mathrm{x}(3) e^{\frac{-j 3 \pi k}{2}}$
$=0+e^{\frac{-j \pi k}{2}}+2 e^{-j \pi k}+e^{\frac{-j 3 \pi k}{2}}$
$=\cos \frac{\pi k}{2}-\mathrm{j} \sin \frac{\pi k}{2}+2(\cos \pi \mathrm{k}-\mathrm{j} \sin \pi \mathrm{k})+\cos \frac{3 \pi k}{2}-\mathrm{j} \sin \frac{3 \pi k}{2}$
$=\left(\cos \frac{\pi k}{2}+2 \cos \pi \mathrm{k}+\cos \frac{3 \pi k}{2}\right)-\mathrm{j}\left(\sin \frac{\pi k}{2}+\sin \frac{3 \pi k}{2}\right)$
$\mathrm{K}=0,1,2,3$
When $\mathrm{k}=0$;
$\mathrm{X}(0)=(\cos 0+2 \cos 0+\cos 0)-\mathrm{j}(\sin 0+\sin 0)$
$=(1+2+1)-\mathrm{j}(0+0)=4$
When $\mathrm{k}=1$
$\mathrm{X}(1)=\left(\cos \frac{\pi}{2}+2 \cos \pi+\cos \frac{3 \pi}{2}\right)-j\left(\sin \frac{\pi}{2}+\sin \frac{3 \pi}{2}\right)$
$=(0-2+0)-j(1-1)=-2$
When $\mathrm{k}=2$
$\mathrm{X}(2)=(\cos \pi+2 \cos 2 \pi+\cos 3 \pi)-j(\sin \pi+\sin 3 \pi)$
$=(-1+2-1)-\mathrm{j}(0+0)$
$=0$
When $\mathrm{k}=3$
$X(3)=\left(\cos \frac{3 \pi}{2}+2 \cos 3 \pi+\cos \frac{9 \pi}{2}\right)-j\left(\sin \frac{3 \pi}{2}+\sin \frac{9 \pi}{2}\right)$
$=(0-2+0)-j(-1+1)=-2$

Answer:

$X(0)=4, X(1)=2, X(2)=0, X(3)=-2$

3.1.1. MAGNITUDE AND PHASE REPRESENTATION:

The $X(k)$ is a discrete function of frequency of discrete time signal ω, and so it is also called discrete frequency spectrum of the discrete time signal $x(n)$.

The $\mathrm{X}(\mathrm{k})$ is a complex valued function of k and so it can be expressed in rectangular form as,
$\mathrm{X}(\mathrm{k})=\mathrm{X}_{\mathrm{r}}(\mathrm{k})+\mathrm{j} \mathrm{X}_{\mathrm{i}}(\mathrm{k})$
Where
$X_{r}(k)=$ Real part of $X(k)$
$X_{i}(k)=$ Imaginary part of $X(k)$
Now the magnitude function (or) Magnitude spectrum $|\mathrm{X}(\mathrm{k})|$ can be defined as

$$
|X(k)|^{2}=\mathrm{X}(\mathrm{k}) \mathrm{X}^{*}(\mathrm{k})(\mathrm{or})|\mathrm{X}(\mathrm{k})|=\sqrt{\mathrm{X}(\mathrm{k}) \mathrm{X} *(\mathrm{k})}
$$

Where $X^{*}(k)$ is a complex conjugate of $X(k)$
The Phase function (or phase spectrum) / $\mathrm{X}(\mathrm{k})$ is defined as
$/ \mathrm{X}(\mathrm{k})=\operatorname{Arg}[\mathrm{X}(\mathrm{k})]=\tan ^{-1}\left[\frac{\mathrm{Xi}(\mathrm{k})}{\mathrm{Xr}(\mathrm{k})}\right]$
Since $\mathrm{X}(\mathrm{k})$ is a sequence consisting of N -complex numbers for $\mathrm{k}=0,1,2, \mathrm{~N}-1$, the magnitude and phase spectrum of $\mathrm{X}(\mathrm{k})$ can be expressed as a sequence as shown below.

Magnitude sequence, $|\mathrm{X}(\mathrm{k})|=\{|\mathrm{X}(0)|,|\mathrm{X}(1)|,|\mathrm{X}(2)|, \ldots \ldots .|\mathrm{X}(\mathrm{N}-1)|\}$
Phase sequence, $/ \mathrm{X}(\mathrm{k})=\{/ \mathrm{X}(0), / \mathrm{X}(1), / \mathrm{X}(2), \ldots \ldots . ., / \mathrm{X}(\mathrm{N}-1)\}$
The plot of samples of magnitude sequence versus k is called magnitude spectrum and the plot of samples of phase sequence versus k is called phase spectrum. In general, these plots are called frequency spectrum.

