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PUBLISH SUBSCRIBE MODEL 

 

🞂 Publish/Subscribe systems are nowadays considered a key technology for information 

diffusion. 

🞂 Each participant in a publish/subscribe communication system can play the role of a 

publisher or a subscriber of information. 

🞂 Publishers produce information in form of events, which are then consumed by 

subscribers. 

🞂 Subscribers can declare their interest on a subset of the whole information issuing 

subscriptions. 

🞂 There are two major roles: 

 

🞂 Publisher 

 

🞂 Subscriber 

 

🞂 The former provides facilities for the later to register its interest in a specific topic or 

event. 

🞂 Specific conditions holding true on the publisher side can trigger the creation of messages 

that are attached to a specific event. 

🞂 Message will be available to all the subscribers that registered for the corresponding 

event. 

🞂 There are two major strategies for dispatching the event to the subscribers. 

 

Push strategy: 

 

🞂 It is the responsibility of the publisher to notify all the subscribers. Eg: Method 

invocation. 

Pull strategy : 

 

🞂 The publisher simply makes available the message for a specific event. 

 

🞂 It is the responsibility of the subscribers to check whether there are messages on the 

events that are registered. 

🞂 Subscriptions are used to filter out part of the events produced by publishers. 

 

🞂 In Software Architecture, Publish/Subscribe pattern is a message pattern and a network 
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oriented architectural pattern 

🞂 It describes how two different parts of a message passing system connect and 

communicate with each other. 

🞂 There are three main components to the Publish Subscribe Model: 

 

🞂 Publishers 

 

🞂 Eventbus/broker 

 

🞂 Subscribers 

 

Publishers: 

 

🞂 Broadcast messages, with no knowledge of the subscribers. 

 

Subscribers: 

 

🞂 They ‘listen’ out for  messages regarding  topic/categories that they  are interested  in 

without any knowledge of who the publishers are. 

Event Bus: 

 

🞂 Transfers the messages from the publishers to the subscribers. 

 

 
 

Figure 2.8 Publish Subscribe Model 
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🞂 Each subscriber only receives a subset of the messages that have been sent by the 

Publisher. 

🞂 Receive the message topics or categories they have subscribed to. 

 

🞂 There are two methods of filtering out unrequired messages: 

 

 Topic based filter 

 

 Content based filter 

 

 

 

Figure 2.9 High Level View of A Publish/Subscribe System 

 

🞂 A generic pub/sub communication system is often referred as Event Service or 

Notification Service. 

🞂 System composed of a set of nodes distributed over a communication network. 

 

🞂 The clients of this system are divided according to their role into publishers and 

subscribers. 

🞂 Clients are not required to communicate directly among themselves. 

 

🞂 The interaction takes place through the nodes of the pub/sub system. 

 

Elements of a Publish/Subscribe System 

 

🞂 A publisher submits a piece of information e (i.e., an event) to the pub/sub system by 

executing the publish(e) operation. 

🞂 An event is structured as a set of attribute-value pairs. 

 

🞂 Each attribute has a name, a simple character string, and a type. 

 

🞂 The type is generally one of the common primitive data types defined in programming 
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languages or query languages (e.g. integer, real, string, etc.). 

🞂 On the subscriber’s side, interest in specific events is expressed through subscriptions. 

 

🞂 A subscription is a filter over a portion of the event content (or the whole of it). 

 

🞂 Expressed through a set of constraints that depend on the subscription language. 

 

🞂 A subscriber installs and removes a subscription from the pub/sub system by executing 

the subscribe() and unsubscribe() operations respectively. 

🞂 An event e matches a subscription if it satisfies all the declared constraints on the 

corresponding attributes. 

🞂 The task of verifying whenever an event e matches a subscription is called matching. 

 

Semantics of a Publish/subscribe System 

 

🞂 When a process issues a subscribe/unsubscribe operation, the pub/sub system is not 

immediately aware of the occurred event. 

🞂 The registration (resp. cancellation) of a subscription takes a certain amount of time, 

denoted as Tsub, to be stored into the system. 

This time encompass the update of the internal data structures of the pub/sub system and the 

network delay due to the routing of the subscription. 

Three properties: 

 

Safety (Legality): A subscriber cannot be notified for an information it is not interested 

in. 

Safety (Validity): A subscriber cannot be notified for an event that has not been previously 

published. 

Liveness: The delivery of a notification for an event is guaranteed only for those 

subscribers that subscribed at a time at least Tsub before the event was published. 

Quality of Service in Publish/Subscribe Systems 

 

Reliable delivery 

Timeliness 

Security and trust 
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Reliable delivery 

 

🞂 Reliable delivery of an event means determining the subscribers that have to receive a 

published event, as stated by the liveness property and delivering the event to all of them. 

Timeliness 

 

🞂 Real-time applications often require strict control over the time elapsed by a piece of 

information to reach all its consumers. 

🞂 They are typically deployed over dedicated infrastructures or simply managed 

environments where synchronous message delivery can be safely assumed. 

Security and trust 

 

🞂 A subscriber wants to trust authenticity of the events it receives from the system. 

 

🞂 Generated by a trusty publisher and the information they contains have not been corrupted. 

🞂 Subscribers have to be trusted for what concerns the subscriptions they issue. 

 

🞂 Since an event is in general delivered to several subscribers, the producer/consumer trust 

relationship that commonly occur in a point-to-point communication, in pub/sub system 

must involve multiple participants 

Subscription Models 

 

Topic based Model 

Type based Model 

Concept based Model 

Content based Model 

Topic-based Model 

 

🞂 Events are grouped in topics. 

 

🞂 A subscriber declares its interest for a particular topic to receive all events pertaining to 

that topic. 

🞂 Each topic corresponds to a logical channel ideally connecting each possible publisher to 

all interested subscribers. 

🞂 Requires the messages to be broadcasted into logical channels. 

 

🞂 Subscribers only receive messages from logic channels they care about (and have 
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subscribed to). 

Type based Model 

 

🞂 Pub/sub variant events are actually objects belonging to a specific type, which can thus 

encapsulate attributes as well as methods. 

🞂 Types represent a more robust data model for application developer. 

 

🞂 Enforce type-safety at the pub/sub system, rather than inside the application. 

 

🞂 The declaration of a desired type is the main discriminating attribute. 

 

Concept based Model 

 

🞂 Allows to describe event schema at a higher level of abstraction by using ontologies. 

 

🞂 Provide a knowledge base for an unambiguous interpretation of the event structure, by 

using metadata and mapping functions. 

Content based Model 

 

🞂 System allows subscribers to receive messages based on the content of the messages. 

Subscribers themselves must sort out junk messages from the ones they want. 

Benefits 

 

Loose coupling 

 

🞂 The publisher is not aware of the number of subscribers, of the identities of the subscribers, 

or of the message types that the subscribers are subscribed to. 

Improved security 

 

🞂 The communication infrastructure transports the published messages only to the 

applications that are subscribed to the corresponding topic. 

🞂 Specific applications can exchange messages directly, excluding other applications from 

the message exchange. 

Improved testability. 

 

🞂 Topics usually reduce the number of messages that are required for testing. 

 

Separation of concerns 
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🞂 Due to the simplistic nature of the architecture, developers can exercise fine grained 

separation of concerns by dividing up message types to serve a single simple purpose each. 

🞂 Eg. data with a topic “/cats” should only contain information about cats. 

 

Reduced cognitive load for subscribers 

 

🞂 Subscribers need not concern themselves with the inner workings of a publisher. 

 

🞂 They do not even have to access to the source code. 

 

🞂 Subscribers only interact with the publisher through the public API exposed by the 

publisher. 

Drawbacks 

 

Increased complexity. 

 

Publish/Subscribe requires you to address the following: 

 

🞂 To design a message classification scheme for topic implementation. 

 

🞂 To implement the subscription mechanism. 

 

🞂 To modify the publisher and the subscribers. 

Increased maintenance effort. 

 

🞂 Managing topics requires maintenance work. 

 

🞂 Organizations that maintain many topics usually have formal procedures for their use. 

 

Decreased performance 

 

🞂 Subscription management adds overhead. 

 

🞂 This overhead increases the latency of message exchange, and this latency decreases 

performance. 

Inflexibility of data sent by publisher 

 

🞂 The publish/subscribe model introduces high semantic coupling in the messages passed 

by the publishers to the subscribers. 

🞂 Once the structure of the data is established, it becomes difficult to change. 

 

🞂 In order to change the structure of the messages, all of the subscribers must be altered to 

accept the changed format 
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Instability of Delivery 

 

🞂 The publisher does not have perfect knowledge of the status of the systems listening to 

the messages. 

🞂 For instance, publish/subscribe is commonly used for logging systems. 

 

🞂 If a logger subscribing to the ‘Critical’ message type crashes or gets stuck in an error 

state, then the ‘Critical’ messages may be lost! 

🞂 Then any services depending on the error messages will be unaware of the problems with 

the publisher. 

Applications 

 

Used in a wide range of group communication applications including 

 

 Software Distribution 

 

 Internet TV 

 

 Audio or Video-conferencing 

 

 Virtual Classroom 

 Multi-party Network Games 

 

 Distributed Cache Update 

 

It can also be used in even larger size group communication applications, such as broadcasting 

and content distribution. 

 News and Sports Ticker Services 

 

 Real-time Stock Quotes and Updates 

 

 Market Tracker 

 

 Popular Internet Radio Sites 

 


