
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

PUBLISH SUBSCRIBE MODEL

🞂 Publish/Subscribe systems are nowadays considered a key technology for information

diffusion.

🞂 Each participant in a publish/subscribe communication system can play the role of a

publisher or a subscriber of information.

🞂 Publishers produce information in form of events, which are then consumed by

subscribers.

🞂 Subscribers can declare their interest on a subset of the whole information issuing

subscriptions.

🞂 There are two major roles:

🞂 Publisher

🞂 Subscriber

🞂 The former provides facilities for the later to register its interest in a specific topic or

event.

🞂 Specific conditions holding true on the publisher side can trigger the creation of messages

that are attached to a specific event.

🞂 Message will be available to all the subscribers that registered for the corresponding

event.

🞂 There are two major strategies for dispatching the event to the subscribers.

Push strategy:

🞂 It is the responsibility of the publisher to notify all the subscribers. Eg: Method

invocation.

Pull strategy :

🞂 The publisher simply makes available the message for a specific event.

🞂 It is the responsibility of the subscribers to check whether there are messages on the

events that are registered.

🞂 Subscriptions are used to filter out part of the events produced by publishers.

🞂 In Software Architecture, Publish/Subscribe pattern is a message pattern and a network

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

oriented architectural pattern

🞂 It describes how two different parts of a message passing system connect and

communicate with each other.

🞂 There are three main components to the Publish Subscribe Model:

🞂 Publishers

🞂 Eventbus/broker

🞂 Subscribers

Publishers:

🞂 Broadcast messages, with no knowledge of the subscribers.

Subscribers:

🞂 They ‘listen’ out for messages regarding topic/categories that they are interested in

without any knowledge of who the publishers are.

Event Bus:

🞂 Transfers the messages from the publishers to the subscribers.

Figure 2.8 Publish Subscribe Model

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

🞂 Each subscriber only receives a subset of the messages that have been sent by the

Publisher.

🞂 Receive the message topics or categories they have subscribed to.

🞂 There are two methods of filtering out unrequired messages:

 Topic based filter

 Content based filter

Figure 2.9 High Level View of A Publish/Subscribe System

🞂 A generic pub/sub communication system is often referred as Event Service or

Notification Service.

🞂 System composed of a set of nodes distributed over a communication network.

🞂 The clients of this system are divided according to their role into publishers and

subscribers.

🞂 Clients are not required to communicate directly among themselves.

🞂 The interaction takes place through the nodes of the pub/sub system.

Elements of a Publish/Subscribe System

🞂 A publisher submits a piece of information e (i.e., an event) to the pub/sub system by

executing the publish(e) operation.

🞂 An event is structured as a set of attribute-value pairs.

🞂 Each attribute has a name, a simple character string, and a type.

🞂 The type is generally one of the common primitive data types defined in programming

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

languages or query languages (e.g. integer, real, string, etc.).

🞂 On the subscriber’s side, interest in specific events is expressed through subscriptions.

🞂 A subscription is a filter over a portion of the event content (or the whole of it).

🞂 Expressed through a set of constraints that depend on the subscription language.

🞂 A subscriber installs and removes a subscription from the pub/sub system by executing

the subscribe() and unsubscribe() operations respectively.

🞂 An event e matches a subscription if it satisfies all the declared constraints on the

corresponding attributes.

🞂 The task of verifying whenever an event e matches a subscription is called matching.

Semantics of a Publish/subscribe System

🞂 When a process issues a subscribe/unsubscribe operation, the pub/sub system is not

immediately aware of the occurred event.

🞂 The registration (resp. cancellation) of a subscription takes a certain amount of time,

denoted as Tsub, to be stored into the system.

This time encompass the update of the internal data structures of the pub/sub system and the

network delay due to the routing of the subscription.

Three properties:

Safety (Legality): A subscriber cannot be notified for an information it is not interested

in.

Safety (Validity): A subscriber cannot be notified for an event that has not been previously

published.

Liveness: The delivery of a notification for an event is guaranteed only for those

subscribers that subscribed at a time at least Tsub before the event was published.

Quality of Service in Publish/Subscribe Systems

Reliable delivery

Timeliness

Security and trust

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

Reliable delivery

🞂 Reliable delivery of an event means determining the subscribers that have to receive a

published event, as stated by the liveness property and delivering the event to all of them.

Timeliness

🞂 Real-time applications often require strict control over the time elapsed by a piece of

information to reach all its consumers.

🞂 They are typically deployed over dedicated infrastructures or simply managed

environments where synchronous message delivery can be safely assumed.

Security and trust

🞂 A subscriber wants to trust authenticity of the events it receives from the system.

🞂 Generated by a trusty publisher and the information they contains have not been corrupted.

🞂 Subscribers have to be trusted for what concerns the subscriptions they issue.

🞂 Since an event is in general delivered to several subscribers, the producer/consumer trust

relationship that commonly occur in a point-to-point communication, in pub/sub system

must involve multiple participants

Subscription Models

Topic based Model

Type based Model

Concept based Model

Content based Model

Topic-based Model

🞂 Events are grouped in topics.

🞂 A subscriber declares its interest for a particular topic to receive all events pertaining to

that topic.

🞂 Each topic corresponds to a logical channel ideally connecting each possible publisher to

all interested subscribers.

🞂 Requires the messages to be broadcasted into logical channels.

🞂 Subscribers only receive messages from logic channels they care about (and have

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

subscribed to).

Type based Model

🞂 Pub/sub variant events are actually objects belonging to a specific type, which can thus

encapsulate attributes as well as methods.

🞂 Types represent a more robust data model for application developer.

🞂 Enforce type-safety at the pub/sub system, rather than inside the application.

🞂 The declaration of a desired type is the main discriminating attribute.

Concept based Model

🞂 Allows to describe event schema at a higher level of abstraction by using ontologies.

🞂 Provide a knowledge base for an unambiguous interpretation of the event structure, by

using metadata and mapping functions.

Content based Model

🞂 System allows subscribers to receive messages based on the content of the messages.

Subscribers themselves must sort out junk messages from the ones they want.

Benefits

Loose coupling

🞂 The publisher is not aware of the number of subscribers, of the identities of the subscribers,

or of the message types that the subscribers are subscribed to.

Improved security

🞂 The communication infrastructure transports the published messages only to the

applications that are subscribed to the corresponding topic.

🞂 Specific applications can exchange messages directly, excluding other applications from

the message exchange.

Improved testability.

🞂 Topics usually reduce the number of messages that are required for testing.

Separation of concerns

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

🞂 Due to the simplistic nature of the architecture, developers can exercise fine grained

separation of concerns by dividing up message types to serve a single simple purpose each.

🞂 Eg. data with a topic “/cats” should only contain information about cats.

Reduced cognitive load for subscribers

🞂 Subscribers need not concern themselves with the inner workings of a publisher.

🞂 They do not even have to access to the source code.

🞂 Subscribers only interact with the publisher through the public API exposed by the

publisher.

Drawbacks

Increased complexity.

Publish/Subscribe requires you to address the following:

🞂 To design a message classification scheme for topic implementation.

🞂 To implement the subscription mechanism.

🞂 To modify the publisher and the subscribers.

Increased maintenance effort.

🞂 Managing topics requires maintenance work.

🞂 Organizations that maintain many topics usually have formal procedures for their use.

Decreased performance

🞂 Subscription management adds overhead.

🞂 This overhead increases the latency of message exchange, and this latency decreases

performance.

Inflexibility of data sent by publisher

🞂 The publish/subscribe model introduces high semantic coupling in the messages passed

by the publishers to the subscribers.

🞂 Once the structure of the data is established, it becomes difficult to change.

🞂 In order to change the structure of the messages, all of the subscribers must be altered to

accept the changed format

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8791 CLOUD COMPUTING

Instability of Delivery

🞂 The publisher does not have perfect knowledge of the status of the systems listening to

the messages.

🞂 For instance, publish/subscribe is commonly used for logging systems.

🞂 If a logger subscribing to the ‘Critical’ message type crashes or gets stuck in an error

state, then the ‘Critical’ messages may be lost!

🞂 Then any services depending on the error messages will be unaware of the problems with

the publisher.

Applications

Used in a wide range of group communication applications including

 Software Distribution

 Internet TV

 Audio or Video-conferencing

 Virtual Classroom

 Multi-party Network Games

 Distributed Cache Update

It can also be used in even larger size group communication applications, such as broadcasting

and content distribution.

 News and Sports Ticker Services

 Real-time Stock Quotes and Updates

 Market Tracker

 Popular Internet Radio Sites

