
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

QUEUE 

Queue data structure is a linear data structure in which the operations are performed based on FIFO principle. In a 

queue data structure, adding and removing of elements are performed at two different positions. The insertion 

operation is performed at a position which is known as 'rear' and the deletion operation is performed at a position 

which is known as 'front'. 

 

In a queue data structure, the insertion operation is performed using a function called "enQueue()" and deletion 

operation is performed using a function called "deQueue()". 

 

Queue data structure using array can be implemented as follows 

 

Before we implement actual operations, first follow the below steps to create an empty queue.  

Step1: Include   all   the header   files which    are   used   in   the   program   and   define    a constant 'SIZE' with    

             specific value. 

Step 2: Declare all the user defined functions which are used in queue implementation. 

Step 3: Create a one dimensional array with above defined SIZE (int queue[SIZE]) 

Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front = -1, rear = -1) 

Step 5: Then implement main method by displaying menu of operations list and make suitable function calls  

             to perform operation selected by the user on queue. 

 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

Inserting value into the queue 

In a queue data structure, enQueue() is a function used to insert a new element into the queue. In a queue, the new 

element is always inserted at rear position. The enQueue() function takes one integer value as parameter and inserts 

that value into the queue. We can use the following steps to insert an element into the queue... 

Step 1: Check whether queue is FULL. (rear == SIZE-1) 

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and terminate the function. 

Step 3: If it is NOT FULL, then increment rear value by one (rear++) and set queue[rear] = value. 

Deleting a value from the Queue 

In a queue data structure, deQueue() is a function used to delete an element from the queue. In a queue, the element 

is always deleted from frontposition. The deQueue() function does not take any value as parameter. We can use the 

following steps to delete an element from the queue...  

Step 1: Check whether queue is EMPTY. (front == rear) 

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and terminate the function. 

Step 3: If it is NOT EMPTY, then increment the front value by one (front ++). Then display queue[front] as 

deleted element. Then check whether both front and rear are equal (front == rear), if it TRUE, then set both 

front and rear to '-1' (front = rear = -1). 

Displays the elements of a Queue 

We can use the following steps to display the elements of a queue... 

Step 1: Check whether queue is EMPTY. (front == rear) 

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function. 

Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'. 

Step 4: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until 'i' value is equal to 

rear (i <= rear) 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

Program: 

#include<stdio.h> 

#include<conio.h> 

#define SIZE 10 void enQueue(int); void deQueue(); void display(); 

int queue[SIZE], front = -1, rear = -1; 

void main() 

{ 

int value, choice; 

clrscr(); 

while(1) 

{ 

printf("\n\n***** MENU *****\n"); 

printf("1. Insertion\n2. Deletion\n3. Display\n4. Exit"); 

printf("\nEnter your choice: "); 

scanf("%d",&choice); 

switch(choice) 

{ 

case 1:  

printf("Enter the value to be insert: "); 

scanf("%d",&value);  

enQueue(value);  



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

break; 

case 2:  

deQueue(); 

break; 

case 3: display(); 

break; 

case 4: exit(0); 

default: printf("\nWrong selection!!! Try again!!!"); 

} 

} 

} 

 void enQueue(int value) 

{ 

if(rear == SIZE-1) 

printf("\nQueue is Full!!! Insertion is not possible!!!"); 

else 

{ 

if(front == -1) 

front = 0; 

rear++; 

queue[rear] = value; 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

printf("\nInsertion success!!!"); 

} 

} 

void deQueue() 

{ 

if(front == rear) 

printf("\nQueue is Empty!!! Deletion is not possible!!!"); 

else 

{ 

printf("\nDeleted : %d", queue[front]); 

front++; 

if(front == rear) front= rear = -1; 

} 

} 

void display() 

{ 

if(rear == -1) 

printf("\nQueue is Empty!!!"); 

else 

{ 

inti; 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

printf("\nQueue elements are:\n"); 

for(i=front; i<=rear; i++) 

printf("%d\t",queue[i]); 

} 

} 

QUEUE USING LINKED LIST 

The major problem with the queue implemented using array is, It will work for only fixed number of data. That means, 

the amount of data must be specified in the beginning itself. Queue using array is not suitable when we don't know 

the size of data which we are going to use. A queue data structure can be implemented using linked list data structure. 

The queue which is implemented using linked list can work for unlimited number of values. That means, queue using 

linked list can work for variable size of data (No need to fix the size at beginning of the implementation). The Queue 

implemented using linked list can organize as many data values as we want. 

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and the first node is always 

pointed by 'front'. 

Example 

 

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted node is 10 and it is 

pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50. 

To implement queue using linked list, we need to set the following things before implementing actual operations. 

Step 1: Include all the header files which are used in the program. And declare all the user defined functions. 

Step 2: Define a 'Node' structure with two members data and next. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL. 

Step 4: Implement the main method by displaying Menu of list of operations and make suitable function calls 

in the main method to perform user selected operation. 

enQueue(value) - Inserting an element into the Queue 

We can use the following steps to insert a new node into the queue... 

Step 1: Create a newNode with given value and set 'newNode → next' to NULL. 

Step 2: Check whether queue is Empty (rear == NULL) 

Step 3: If it is Empty then, set front = newNode and rear = newNode. 

Step 4: If it is Not Empty then, set rear → next = newNode and rear = newNode. 

deQueue() - Deleting an Element from Queue 

We can use the following steps to delete a node from the queue... 

Step 1: Check whether queue is Empty (front == NULL). 

Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate from 

the function 

Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'. 

Step 4: Then set 'front = front → next' and delete 'temp' (free(temp)).  

display() - Displaying the elements of Queue 

We can use the following steps to display the elements (nodes) of a queue... 

Step 1: Check whether queue is Empty (front == NULL). 

Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the function. 

Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with front. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp' reaches 

to 'rear' (temp → next != NULL). 

Step 4: Finally! Display 'temp → data ---> NULL'. 

Program: 

#include<stdio.h> 

#include<conio.h> 

struct Node 

{ 

 int data; 

struct Node *next; 

}*front = NULL,*rear = NULL; 

void insert(int);  

void delete();  

void display(); 

void main() 

{ 

int choice, value; 

clrscr(); 

printf("\n:: Queue Implementation using Linked List ::\n"); 

while(1){ 

printf("\n****** MENU ******\n"); 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n"); 

printf("Enter your choice: "); 

scanf("%d",&choice); 

switch(choice){ 

case 1:  

printf("Enter the value to be insert: "); 

scanf("%d", &value); 

insert(value); 

break; 

case 2:  

delete();  

break;  

case 3:   

display();  

break;  

case 4: exit(0); 

default: printf("\nWrong selection!!! Please try again!!!\n"); 

} 

} 

} 

void insert(int value) 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

{ 

struct Node *newNode; 

newNode = (struct Node*)malloc(sizeof(struct Node)); 

newNode->data = value; 

newNode -> next = NULL; 

if(front == NULL) 

front = rear = newNode; 

else 

{ 

rear -> next = newNode; 

rear = newNode; 

} 

printf("\nInsertion is Success!!!\n"); 

} 

void delete() 

{ 

if(front == NULL) 

printf("\nQueue is Empty!!!\n"); 

else 

{ 

struct Node *temp = front; 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

CS8391 DATA STRUCTURES 

front = front -> next; 

printf("\nDeleted element: %d\n", temp->data); 

free(temp); 

} 

} 

void display() 

{ 

if(front == NULL) 

printf("\nQueue is Empty!!!\n"); 

else 

{ 

struct Node *temp = front; 

while(temp->next != NULL) 

{  

printf("%d--->",temp->data); temp = temp -> next; 

} 

printf("%d--->NULL\n",temp->data); 

} 

} 

 


