
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUATATION

REGULAR EXPRESSION

o The language accepted by finite automata can be easily described by simple expressions called

Regular Expressions. It is the most effective way to represent any language.

o The languages accepted by some regular expression are referred to as Regular languages.

o A regular expression can also be described as a sequence of pattern that defines a string.

o Regular expressions are used to match character combinations in strings. String searching

algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x. It can generate {e, x, xx, xxx, xxxx,
.....}

In a regular expression, x+ means one or more occurrence of x. It can generate {x, xx, xxx, xxxx,}

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

1. 1. L U M = {s | s is in L or s is in M}

Intersection: If L and M are two regular languages then their intersection is also an intersection.

1. 1. L ⋂ M = {st | s is in L and t is in M}

Kleen closure: If L is a regular language then its Kleen closure L1* will also be a regular language.

1. 1. L* = Zero or more occurrence of language L.

Example 1:

Write the regular expression for the language accepting all combinations of a's, over the set ∑ = {a}

Solution:

All combinations of a's means a may be zero, single, double and so on. If a is appearing zero times,
that means a null string. That is we expect the set of {ε, a, aa, aaa,}. So we give a regular
expression for this as:

1. R = a*

That is Kleen closure of a.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUATATION

Example 2:

Write the regular expression for the language accepting all combinations of a's except the null string,
over the set ∑ = {a}

Solution:

The regular expression has to be built for the language

1. L = {a, aa, aaa,}

This set indicates that there is no null string. So we can denote regular expression as:

R = a+

Example 3:

Write the regular expression for the language accepting all the string containing any number of a's and
b's.

Solution:

The regular expression will be:

1. r.e. = (a + b)*

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab,}, any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

Examples of Regular Expression

Example 1:

Write the regular expression for the language accepting all the string which are starting with 1 and
ending with 0, over ∑ = {0, 1}.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The r.e. is as
follows:

1. R = 1 (0+1)* 0

Example 2:

Write the regular expression for the language starting and ending with a and having any having any
combination of b's in between.

Solution:

The regular expression will be:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUATATION

1. R = a b* b

Example 3:

Write the regular expression for the language starting with a but not having consecutive b's.

Solution: The regular expression has to be built for the language:

1. L = {a, aba, aab, aba, aaa, abab,}

The regular expression for the above language is:

1. R = {a + ab}*

Example 4:

Write the regular expression for the language accepting all the string in which any number of a's is
followed by any number of b's is followed by any number of c's.

Solution: As we know, any number of a's means a* any number of b's means b*, any number of c's
means c*. Since as given in problem statement, b's appear after a's and c's appear after b's. So the
regular expression could be:

1. R = a* b* c*

Example 5:

Write the regular expression for the language over ∑ = {0} having even length of the string.

Solution:

The regular expression has to be built for the language:

1. L = {ε, 00, 0000, 000000,}

The regular expression for the above language is:

1. R = (00)*

Example 6:

Write the regular expression for the language having a string which should have atleast one 0 and
alteast one 1.

Solution:

The regular expression will be:

1. R = [(0 + 1)* 0 (0 + 1)* 1 (0 + 1)*] + [(0 + 1)* 1 (0 + 1)* 0 (0 + 1)*]

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUATATION

Example 7:

Describe the language denoted by following regular expression

1. r.e. = (b* (aaa)* b*)*

Solution:

The language can be predicted from the regular expression by finding the meaning of it. We will first
split the regular expression as:

r.e. = (any combination of b's) (aaa)* (any combination of b's)

L = {The language consists of the string in which a's appear triples, there is no restriction on the
number of b's}

Example 8:

Write the regular expression for the language L over ∑ = {0, 1} such that all the string do not contain
the substring 01.

Solution:

The Language is as follows:

1. L = {ε, 0, 1, 00, 11, 10, 100,}

The regular expression for the above language is as follows:

1. R = (1* 0*)

Example 9:

Write the regular expression for the language containing the string over {0, 1} in which there are at
least two occurrences of 1's between any two occurrences of 1's between any two occurrences of 0's.

Solution: At least two 1's between two occurrences of 0's can be denoted by (0111*0)*.

Similarly, if there is no occurrence of 0's, then any number of 1's are also allowed. Hence the r.e. for
required language is:

1. R = (1 + (0111*0))*

Example 10:

Write the regular expression for the language containing the string in which every 0 is immediately
followed by 11.

Solution:

The regular expectation will be:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUATATION

1. R = (011 + 1)*

