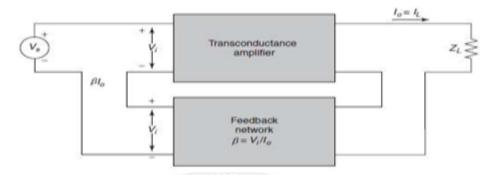
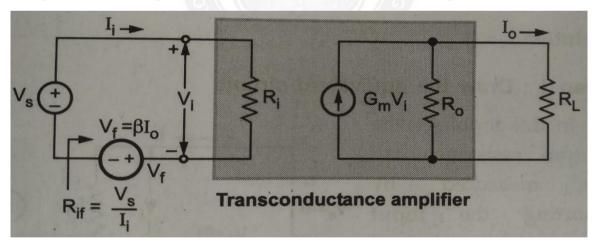
1.5 ANALYSIS OF FEEDBACK AMPLIFIER

CURRENT-SERIES (OR) SERIES-SERIES FEEDBACK AMPLIFIER

• Trans-conductance feedback amplifier provides an output current Io which is proportional to the input voltage V_s . The feedback signal is the voltage V_f , Here added to Vs at the input of the amplifier.




Fig.1.5.1 . Current – Series Amplifier

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-240)

Input & Output resistance:

Input resistance:

• Step 1:Draw the equivalent Circuit for Current Series amplifier

Fig.1.5.2. Current – Series Amplifier-input resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-240)

Looking in fig1.5.2 the input resistance with feedback is given $R_{if} = V_s / I_i$

• Step 2:Obtain expression for V_s

Appling KVL to the input side,

$$V_s - I_i R_i - V_f = 0$$

• Step 3:Obtain expression for I_o in terms of V_i

Output Current
$$I_o$$
 is given by
 $I_o = G_m V_i R_o / (R_o + R_L)$
where $G_M = G_m R_o / (R_o + R_L)$
 $I_o = = G_M V_i = G_M I_i R_i$ ------(2)

 G_m is open Circuit Transconductance gain without feedback and G_M is Transconductance without feedback taking the load R_L into account

• Step 4: Obtain expression for R_{if}

Sub value of I_o from eqn (2) in eqn (1) $V_s = I_i R_i + \beta G_M I_i R_i = I_i (R_i + \beta G_M R_i)$ $R_{if} = Vs / Ii = R_i + \beta G_M R_i$

Output resistance:

• Step 1:Draw the equivalent Circuit

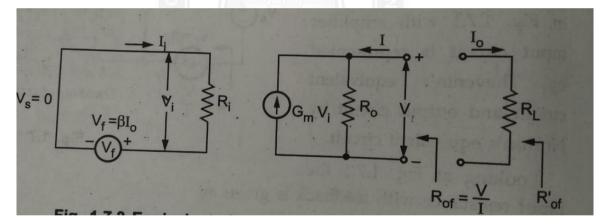


Fig.1.5.3 . Current – Series Amplifier-output resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-241)

Output resistance can be measured by shorting the input source $V_s = 0$ and looking into the output terminals with R_L disconnected

• Step 2: Obtain expression for I in terms of V

Appling KCL to the output Node,

$$I = (V / R_o) - G_m V_i$$
 ------ (1)

Input voltage is given by

$$V_i = -V_f = -\beta I_o$$

 $V_i = \beta I$:; $I_o = -I$ ------(2)

Sub value of V_i from eqn (2) in eqn (1)

$$I = (V / R_o) - G_m \beta I$$

 $V / R_o = I + G_m \beta I = I (1 + G_m \beta)$

• Step 3: Obtain expression for R_{of}

$$R_{of} = V / I$$
$$R_{of} = R_o (1 + \beta G_m)$$

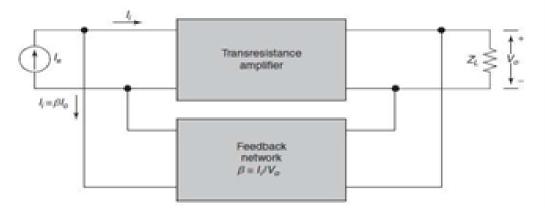
• Step 4: Obtain expression for R'_{of}

$$R'_{of} = R_{of} \parallel R_L = R_o R_L / (R_o + R_L + \beta A_v R_L)$$

Dividing num and den by $(R_o + R_L)$

 $R'_{of} = R'_{o} (1 + \beta G_m) / (1 + \beta G_M)$

 $R'_{o} = R_{o} R_{L} / (R_{o} + R_{L})$


$$G_{\rm M} = G_{\rm m} R_{\rm o} / (R_{\rm o} + R_{\rm L})$$

Transistorized Analysis of feedback amplifiers:

- 1. Identify the type of feedback
- 2. Find input circuit
- 3. Find output circuit
- 4. Replace transistor by its h-parameter equivalent circuit.
- 5. Find open loop voltage gain
- 6. Indicate v_o and v_f and calculate β
- 7. Calculate D, A_{vf} , R_{if} , R_{of} , and R'_{of}

VOLTAGE-SHUNT (OR) SHUNT-SHUNT FEEDBACK AMPLIFIER

The voltage-shunt or shunt-shunt feedback amplifier provides an output voltage V_o in proportion to the input current I_s. The input current I_i of the basic amplifier is the algebraic sum of I_s and the feedback current I_f.

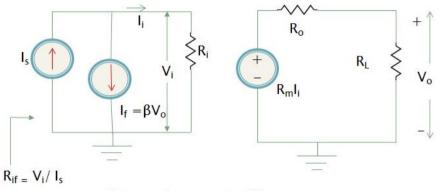


Fig 1.5.4.Voltage-Shunt Amplifier

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-252)

Input Resistance:

• Step 1:Draw the equivalent Circuit for Voltage Shunt amplifier

Transresistance amplifier

Fig 1.5.5.Voltage-Shunt Amplifier-input resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-252) Looking in fig 1.5.5 the input resistance with feedback is given $R_{if} = V_i / I_s$

• Step 2: Obtain expression for I_s

Appling KCL to the input node,

$$\mathbf{I}_{s} = \mathbf{I}_{i} + \mathbf{I}_{f} = \mathbf{I}_{i} + \beta \mathbf{V}_{o} \qquad -----(1)$$

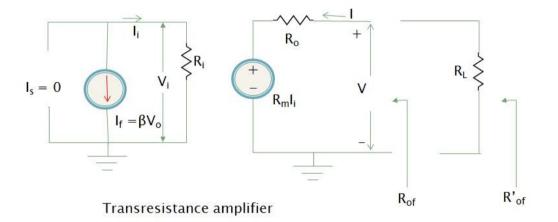
Expression for V_o in terms of I_i

Output Voltage V_o is given by

 $V_o = R_m I_i R_o / (R_o + R_L)$

where $R_M = R_m R_o / (R_o + R_L)$

 R_m is open Circuit Transresistance gain without feedback and R_M is Transresistance without feedback taking the load R_L into account


• Step 3: Obtain expression for R_{if}

Sub value of V_o from eqn (2) in eqn (1)

$$I_{s} = I_{i} + \beta R_{M} I_{i} = I_{i} (1 + \beta R_{M})$$
$$R_{if} = V_{i} / I_{s} = V_{i} / I_{i} (1 + \beta R_{M})$$

Output resistance:

• Step 1:Draw the equivalent Circuit

Fig 1.5.6.Voltage-Shunt Amplifier-output resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-252)

Output resistance can be measured by opening the input source $I_s = 0$ and looking into the output terminals with R_L disconnected

• Step 2: Obtain expression for I in terms of V,

Appling KVL to the output Side,

 $R_m \, I_i + I \; R_o - V = 0$

$$I = (V - R_m I_i) / R_o$$
 ------(1)

Input Current is given by

Sub value of I_i from eqn (2) in eqn (1)

 $I = (V + R_m \beta V) / R_o$

$$\mathbf{I} = \mathbf{V} \left(1 + \mathbf{R}_{\mathrm{m}} \, \beta \right) / \mathbf{R}_{\mathrm{o}}$$

• Step 3: Obtain expression for R_{of}

$$R_{of} = V / I \qquad \qquad R_{of} = R_o / (1 + \beta R_m)$$

• Step 3: Obtain expression for R'_{of}

$$\begin{aligned} R'_{of} &= R_{of} || R_{L} = R_{o}R_{L} / (R_{o} + R_{L} (1 + \beta R_{m})) \\ R'_{of} &= R'_{o} (1 + \beta R_{M}) \\ R'_{o} &= R_{of} R_{L} / (R_{of} + R_{L}) \end{aligned}$$

Dividing num and denominator by $(R_{\rm o}+R_{\rm L}$)

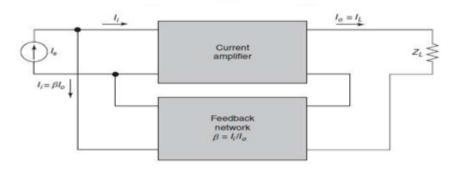
 $R'_{o} = R_{of} R_L / (R_{of} + R_L)$

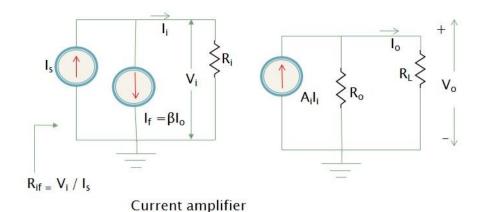
Transistorized Analysis of feedback amplifiers:

- 1. Identify the type of feedback
- 2. Find input circuit
- 3. Find output circuit
- 4. Replace transistor by its h-parameter equivalent circuit.
- 5. Find open loop voltage gain
- 6. Indicate v_o and v_f and calculate β
- 7. Calculate D, A_{vf} , R_{if} , R_{of} , and R'_{of}

SHUNT-SERIES (OR) CURRENT-SHUNT FEEDBACK AMPLIFIER

- The current-shunt feedback amplifier, supplies an output current I_o which is proportional to the input current I_i . This makes it a current amplifier.
- The feedback signal is the current if the input current of the basic amplifier is $I_i = I_s + I_f$ and the output current is $I_o = I$




Fig: 1.5.7 Current -Shunt Amplifier

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-255)

Input & Output resistance:

Input resistance:

• Step 1:Draw the equivalent Ckt for Voltage Series Shunt amplifier

Fig: 1.5.8 Current -Shunt Amplifier-input resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-256)

Looking in fig 1.5.8 the input resistance with feedback is given $R_{if} = V_i / I_s$

• Step 2:Obtain expression for I_s Appling KCL to the input node ,

 $Is = I_i + I_f = I_i + \beta I_o$ ------ (1)

• Step 3:Obtain expression for I_o in terms of I_i

Output Current Io is given by

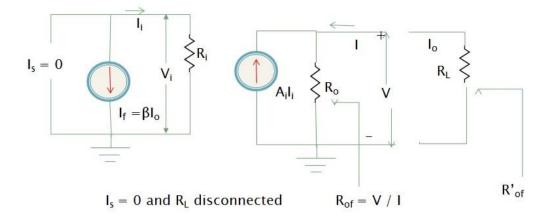
 $I_o = A_i I_i R_o / (R_o + R_L)$

Where $A_I = A_i R_o / (R_o + R_L)$

 $I_o=\ A_I\ I_i$

----- (2)

 A_i is open Circuit Current gain without feedback and A_I is Current gain without feedback taking the load R_L into account


Step 3: Obtain expression for R_{if}
 Sub value of I_o from eqn (2) in eqn (1)

$$I_s = I_i + \beta A_I I_i = I_i (1 + \beta A_I)$$

$$R_{if} = V_i / I_s = V_i / I_i (1 + \beta A_I)$$

Output resistance:

• Step 1:Draw the equivalent Ckt

Fig: 1.5.9 Current -Shunt Amplifier-output resistance

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-256)

Output resistance can be measured by shorting the input source $I_s = 0$ and looking into the output terminals with R_L disconnected

• Step 2: Obtain expression for I in terms of V

Appling KCL to the output node,

$$I = (V / R_o) - A_i I_i$$
 ------ (1)

Input Current is given by

$$I_i = -I_f = -\beta I_o = \beta I \qquad -----(2)$$

Sub value of I_i from eqn (2) in eqn (1)

$$\mathbf{I} = (\mathbf{V} / \mathbf{R}_{o}) - \mathbf{A}_{i} \boldsymbol{\beta} \mathbf{I}$$

$$V / R_o = I + A_i \beta I = I (1 + \beta A_i)$$

• Step 3: Obtain expression for R_{of}

$$R_{of} = V / I$$

$$R_{of} = R_o (1 + \beta A_i)$$

• Step 4: Obtain expression for R'_{of}

$$R'_{\rm of} = R_{\rm of} \parallel R_{\rm L}$$

$$R'_{of} = R'_{o} (1 + \beta A_i) / (1 + \beta A_I)$$

Dividing num and den by $(R_o + R_L)$

$$R'_{o} = R_{o} R_{L} / (R_{o} + R_{L})$$

Transistorized Analysis of feedback amplifiers:

- 1. Identify the type of feedback
- 2. Find input circuit

- 3. Find output circuit
- 4. Replace transistor by its h-parameter equivalent circuit.
- 5. Find open loop voltage gain
- 6. Indicate v_{o} and v_{f} and calculate β
- 7. Calculate D, A_{vf} , R_{if} , R_{of} , and R'_{of}

