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10.QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. quicksort divides input elements according to their value. A partition is an
arrangement of the array’s elements so that all the elements to the left of some element A[s]
are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal
to it:

A[0]...A[s-1] Als] Als+ 1] ...A[n=-1]
allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work
required to combine the solutions to the sub problems.
Here is pseudocode of quicksort: call Quicksort(A[0..n — 1]) where As a partition algorithm use

the Hoare Partition.

ALGORITHM Quicksort(A[L.r])
//Sorts a subarray by quicksort
{/Input: Subarray of array A[0..n — 1], defined by 1its left and right indices [ and »
{/Output: Subarray A[[ 2] sorted in non-decreasing order
ifl=r

5 +—Hoare Partition(A[lr]) //s 1s a split position

Quicksifdll.e — 11
Quicksortids - 1..7])
p all are = p =p - =p all are = p
t— | | —>
D allare < p =p =p allare = p
e §—= |'_;.
D allare < p = all are = p
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ALGORITHM Hoare Partition(A[]r])
//Partitions a subarray by Hoare’s algorithm_ using the first element as a pivot
//Input: Subarray of array A[0..7 — 1], defined by its left and right indices [ and » (T<r)
/Output: Partition of A[],r]. with the split position returned as this function’s value
Rl
p—lLj—r+1
repeat
repeat ; ~— + 1 until A[{]=p
repeat j +—; — 1 until 4]/ = p
swap( 4[], A 1
until ; =
swap(A[{], A ) /undo last swap when [ =
swap(A[[], AU 1

return ,l'[
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FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.
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FIGURE 2.12 Tree of recursive calls to Quicksort with input values | and r of subarray bounds

and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence
Chest(n) = 2Cpest(n/2) + n for n>1, Chest(1) =O0.
By Master Theorem, Crest(n) € ©(n logz n); solving it exactly for n = 2¥ yields Chest(n) = n
logz n. The total number of key comparisons made will be equal to
Cworst(n)=(n+1)+n+...+3=((n+1)(n+2))/2- 3 €O(n?).

n—1

Capgln) = l Z[{f! + 1)+ Cappls) + Coppln — 1 — s)] form =1,
s=0

Cﬂ:'#[{j] =0, C{u';;i]} =0.

Clrrg{-’” A 2nlnn==13% ||;:|g2 n.
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