10.QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer approach, quicksort divides input elements according to their value. A partition is an arrangement of the array's elements so that all the elements to the left of some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal to it:

Sort the two subarrays to the left and to the right of A[s] independently. No work required to combine the solutions to the sub problems.

Here is pseudocode of quicksort: call Quicksort(A[0..n-1]) where As a partition algorithm use the *Hoare Partition*.

ALGORITHM Quicksort(A[lux])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n-1], defined by its left and right indices l and r

//Output: Subarray A[[,,,'] sorted in non-decreasing order

if l < r

 $s \leftarrow Hoare\ Partition(A[l_ur]) //s$ is a split position

Quicksort(A[lus - 1])

Quicksort(A[s+1..r])

ALGORITHM Hoare Partition(A[l,r])

```
//Partitions a subarray by Hoare's algorithm, using the first element as a pivot //Input: Subarray of array A[0..n-1], defined by its left and right indices l and r (l < r) //Output: Partition of A[l_{uv}], with the split position returned as this function's value p \leftarrow A[l] i \leftarrow l; j \leftarrow r+1 repeat i \leftarrow i+1 until A[i] \ge p repeat j \leftarrow j-1 until A[j] \le p swap(A[i], A[j]) until i \ge j swap(A[i], A[j]) //undo last swap when i \ge j swap(A[l], A[j]) //undo last swap when i \ge j swap(A[l], A[j]) return i/
```


0	1	2	3	4	5	6	7
5	1 i 3	1	9	8	2	4	7 <i>j</i> 7
5	3	1	9	8	2	4	7
5	3	1	9 ; 9 ; 4			4 <i>j</i> 4 <i>j</i> 9	7
5	3	1	4	8 ; 8 ; 2 ; 2 5	2 <i>j</i> 2 <i>j</i> 8 <i>i</i> 8	9	7
5	3	1	4	2	<i>j</i> 8	9	7
5	3			<i>j</i> 2	<i>i</i> 8	9	7
2	3	1	4	5	8	9	7
2	3	1	4 4 <i>j</i> 4				
2	3 ; 3 ; 3 ; 1 ; 1	1 1 3 3 3	4				
2	1	3	4				
2	<i>j</i> 1	<i>i</i> 3					
1	2	3	4				
1			ij				
		3 3	4				
		3	i j 4 i 4 4				
			4				
					8	9	7
					8	; 9 ; 7 ; 7 8	j 7 j 9 i 9
					8	<i>j</i> 7	9
					7	8	9
					7		
							9

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

FIGURE 2.12 Tree of recursive calls to *Quicksort* with input values *I* and *r* of subarray bounds and split position *s* of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence

$$C_{\text{best}}(n) = 2C_{\text{best}}(n/2) + n \text{ for } n > 1, \qquad C_{\text{best}}(1) = 0.$$

By Master Theorem, $C_{best}(n) \in \Theta(n \log_2 n)$; solving it exactly for $n = 2^k$ yields $C_{best}(n) = n \log_2 n$. The total number of key comparisons made will be equal to

Cworst(n) =
$$(n + 1) + n + ... + 3 = ((n + 1)(n + 2))/2 - 3 \in \Theta(n^2)$$
.

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)] \quad \text{for } n > 1,$$

$$C_{avg}(0) = 0$$
, $C_{avg}(1) = 0$.

$$C_{avg}(n) \approx 2n \ln n \approx 1.39n \log_2 n.$$

