UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

10.QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. quicksort divides input elements according to their value. A partition is an
arrangement of the array’s elements so that all the elements to the left of some element A[s]
are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal
to it:

A[0]...A[s-1] Als] Als+ 1] ...A[n=-1]
allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work
required to combine the solutions to the sub problems.
Here is pseudocode of quicksort: call Quicksort(A[0..n — 1]) where As a partition algorithm use

the Hoare Partition.

ALGORITHM Quicksort(A[L.r])
//Sorts a subarray by quicksort
{/Input: Subarray of array A[0..n — 1], defined by 1its left and right indices [and »
{/Output: Subarray A[[2] sorted in non-decreasing order
ifl=r

5 +—Hoare Partition(A[lr]) //s 1s a split position

Quicksifdll.e — 11
Quicksortids - 1..7])
p all are = p =p - =p all are = p
t— | | —>
D allare < p =p =p allare = p
e §—= |'_;.
D allare < p = all are = p

CSE: Il/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ALGORITHM Hoare Partition(A[]r])
//Partitions a subarray by Hoare’s algorithm_ using the first element as a pivot
//Input: Subarray of array A[0..7 — 1], defined by its left and right indices [and » (T<r)
/Output: Partition of A[],r]. with the split position returned as this function’s value
Rl
p—lLj—r+1
repeat
repeat ; ~— + 1 until A[{]=p
repeat j +—; — 1 until 4]/ = p
swap(4[], A 1
until ; =
swap(A[{], A) /undo last swap when [=
swap(A[[], AU 1

return ,l'[

CSE: Il/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

UNIT-lI ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

O 1 2 3 4 5 6 7 4
] J
5 3 1 o 8 2 a =
/ F
5 3 1 O 8 2 4 A
i J
5 3 1 4 8 2 S 7
i i
5 3 1 4 8 5% S 7
i J
5 3 1 4 2 8 S 7
/ /
5 3 1 4 2 8 S 7
2 3 1 4 5 8 S 7
/ J
2 3 1 pal
/ J
2 3 1 4
i J
2 3 3 4
J i
2 1 3 4
1 2 3 4
1
iJ
3 4
J i
3 4
A4
/ J
8 S 7
i J
8 7 9
J i
8 7T S
7 8 9
7
9

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

CSE: Il/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

'I:D.- ,rz?
5=4
||:DI, .r=3 II=5. .r:}'
5=1 5=06
||:|::'I_ .r=|:| ||:2I_ .r=3 ||:5I, .r=5 ||:? r—j-'
5=2
'I:2.- .r=1 II=3.. .r=3

FIGURE 2.12 Tree of recursive calls to Quicksort with input values | and r of subarray bounds

and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence
Chest(n) = 2Cpest(n/2) + n for n>1, Chest(1) =O0.
By Master Theorem, Crest(n) € ©(n logz n); solving it exactly for n = 2¥ yields Chest(n) = n
logz n. The total number of key comparisons made will be equal to
Cworst(n)=(n+1)+n+...+3=((n+1)(n+2))/2- 3 €O(n?).

n—1

Capgln) = l Z[{f! + 1)+ Cappls) + Coppln — 1 — s)] form =1,
s=0

Cﬂ:'#[{j] =0, C{u';;i]} =0.

Clrrg{-’” A 2nlnn==13% ||;:|g2 n.

CSE: Il/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

‘ OBSERVE aprimizE QUTSPRERY

W

CSE: 1I/1V CS8451-DESIGN AND ANALYSIS OF ALGORITHM

