
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

The PHP Hypertext Pre-processor (PHP) is a programming language that allows

web developers to create dynamic content that interacts with databases

Unit-4
PHP and XML 8

INTRODUCTION TO PHP

PHP is basically used for developing web based software applications.PHP is probably

the most popular scripting language on the web. It is used to enhance web pages.PHP is

known as a server-sided language. That is because the PHP doesn't get executed on the

client’s computer, but on the computer the user had requested the page from. The results are

then handed over to client, and then displayed in the browser.

Features of PHP:

 PHP is a server side scripting language that is embedded in HTML

 PHP was originally developed by the Danish Greenlander Rasmus Lerdorf, and

was subsequently developed as open source.

 It is used to manage dynamic content, databases, session tracking, even build entire

e-commerce sites.

 It is integrated with a number of popular databases, including MySQL,

PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP supports a large number of protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA),

making n-tier development a possibility for the first time.

 PHP language tries to be as forgiving as possible.

 PHP syntax is C-Like.

Common uses of PHP

 PHP performs system functions, i.e. from files on a system it can create, open,

read, write, and close them.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

 PHP can handle forms, i.e. gather data from files, save data to a file, through email

the user can send data, return data to the user.

 The user can add, delete, and modify elements within the database through PHP.

 They can access cookies variables and set cookies.

 Using PHP, the user can restrict users to access some pages of the website.

 It can encrypt data.

Working of PHP

When the client requests a PHP page residing on the server, the server first performs

the operations mentioned by the PHP code of the page. Then is sends the output of the PHP

page in HTML format. So when the user views the source code of the page, it will be full of

HTML tags. All the work is done at the server side.

4.1 PROGRAMMING WITH PHP

 Comments

A comment is the portion of a program that exists only for the human reader and

stripped out before displaying the programs result. There are two commenting formats

in PHP:

- Single-line comments: They are generally used for short explanations or notes

relevant to the local code.

- Multi-line comments: They are generally used to provide pseudocode

algorithms and more detailed explanations when necessary. The multiline style

of commenting is the same as in C.

Rules of PHP

 PHP is white space insensitive

 PHP is case sensitive

 Statements are expressions terminated by semicolons

 Expressions are combinations of tokens

 Braces make blocks

 PHP Variable Types

All variables in PHP are denoted with a leading dollar sign ($). The value of a variable

is the value of its most recent assignment. Variables are assigned with the = operator,

with the variable on the left-hand side and the expression to be evaluated on the right.

Variables in PHP do not have intrinsic types (data types) - a variable does not

know in advance whether it will be used to store a number or a string of characters.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Variables used before they are assigned have default values. PHP automatically

converts types from one to another when necessary. PHP has a total of eight data

types:

 Integers are whole numbers, without a decimal point. They can be in

decimal, octal or hexadecimal. Eg: 87.

 Doubles are floating-point numbers. Eg: 3.87

 Booleans have only two possible values either true or false.

 NULL is a special type that only has one value: NULL

 Strings are sequences of characters

 Arrays are named and indexed collections of other values.

 Objects are instances of programmer-defined classes, which can package up

both other kinds of values and functions that are specific to the class.

 Resources are special variables that hold references to resources external to

PHP (such as database connections).

 The first five are simple types, and the arrays and objects are compound

types.

 The compound types can package up other arbitrary values of arbitrary

type, whereas the simple types cannot.

Variable Scope

Scope can be defined as the range of availability a variable has to the program in

which it is declared. PHP variables can be one of four scope types: Local variables, Function

parameters, Global variables and Static variables.

Variable Naming

Rules for naming a variable are:

 Variable names must begin with a letter or underscore character.

 A variable name can consist of numbers, letters, underscores but the user

cannot use characters like + , - , % , (,) . & , etc

PHP Constants

A constant is a name or an identifier for a simple value. A constant value cannot

change during the execution of the script. By default a constant is case-sensitive. By

convention, constant identifiers are always uppercase. A constant name starts with a letter or

underscore, followed by any number of letters, numbers, or underscores. To define a constant ,

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

use define() function and retrieve the value of a constant. The function constant() is used to

read a constant's value .

define(name, value, case-insensitive)

The name specifies the name of the constant, value: Specifies the value of the constant

and case-insensitive: Specifies whether the constant name should be case-insensitive. Default

is false

Differences between constants and variables in PHP

Constants in PHP Variables in PHP

No $ sign before constants. $ sign is present before variables.

Constants are defined using define(). Variables are defined using assignment

statement.

Constants may be defined and accessed

anywhere without any regard.

Variables follow certain scope.

Constants cannot be redefined or

undefined.

They can be redefined.

Pre-defined constants

Name Description

 LINE The current line number of the file.

 FILE The full path and filename of the file. If used inside an include,

the name of the included file is returned. Since PHP 4.0.2,

 FILE always contains an absolute path whereas in older

versions it contained relative path under some circumstances

 FUNCTION The function name. (Added in PHP 4.3.0) As of PHP 5 this

constant returns the function name as it was declared (case-

sensitive). In PHP 4 its value is always lowercased.

 CLASS The class name. (Added in PHP 4.3.0) As of PHP 5 this

constant returns the class name as it was declared (case-

sensitive). In PHP 4 its value is always lowercased.

 METHOD The class method name. (Added in PHP 5.0.0) The method

name is returned as it was declared (case-sensitive).

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

<?php

$t = date("H");

if ($t < "20") //This program outputs the echo statement if the hour is <20

{

echo "Have a good day!";

}

?>

 Echo and Print statements

Differences between echo and print statement

echo print

This does not have return value. This has a return value of 1.

This cannot be used in expressions. This can be used in expressions.

This can take multiple parameters. This can take only one parameter.

This is slightly faster than print. This is comparatively slower.

 Operators

Operators are used to perform operations on variables and values.PHP divides the

operators in the following groups: Arithmetic operators, Assignment operators,

Comparison operators, Increment/Decrement operators, Logical operators, String

operators and Array operators.

PHP CONTROL STATMENTS

Decision Making Statements

The if, else if ...else and switch statements are used to take decision based on the

different condition.

 if statement - executes some code only if a specified condition is true.

 if...else statement - executes some code if a condition is true and another code if the

condition is false.

 if...else if ...else statement - specifies a new condition to test, if the first condition is

false

 switch statement - selects one of many blocks of code to be executed

 if statement

if statement

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

<?php

$t = date("H");

if ($t < "20") {

echo "Have a good day!";

} else {

echo "Have a good night!";

}

?>

<?php

$t = date("H");

if ($t < "10") {

echo "Have a good morning!";

} elseif ($t < "20") {

echo "Have a good day!";

} else {

echo "Have a good night!";

}

?>

 if-else statement

Use the if ...else statement to execute some code if a condition is true and another code

if the condition is false.

if else statement

 if-else ladder

Use the if....else if...else statement to specify a new condition to test, if the first condition

is false.

if-else ladder

 switch statement

To select one of many blocks of code to be executed, use the Switch statement. The switch

statement is used to avoid long blocks of if..elseif..else code. The switch statement works

in an unusual way. First it evaluates given expression then seeks a label to match the

resulting value. If a matching value is found then the code associated with the matching

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

<html>

<body>

<?php $d=date("D");

switch ($d)

{

case "Mon":

echo "Today is Monday";

break;

case "Tue":

echo "Today is Tuesday";

break;

case "Wed":

echo "Today is Wednesday";

break;

case "Thu":

echo "Today is Thursday";

break;

case "Fri":

echo "Today is Friday";

break;

case "Sat":

echo "Today is Saturday";

break;

case "Sun":

echo "Today is Sunday";

break;

default:

echo "Wonder which day is this ?";

label will be executed or if none of the labels match then statement will execute any

specified default code.

Switch statement

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Looping Statements

Loops in PHP are used to execute the same block of code a specified number of times.

PHP supports following four loop types

 for : loops through a block of code a specified number of times.

 while: loops through a block of code if and as long as a specified condition is true.

 do...while: loops through a block of code once, and then repeats the loop as long as

a special condition is true.

 foreach: loops through a block of code for each element in an array.

 For loop

for loop

 While loop

The while statement will execute a block of code as long as a test expression is true. If the

test expression is true then the code block will be executed. After the code has executed

the test expression will again be evaluated and the loop will continue until the test

expression is found to be false.

At the end of the loop a=50 and b=25

<html>

<body>

<?php

$a = 0;

$b = 0;

for($i=0; $i<5; $i++)

{

$a += 10;

$b += 5;

}

echo ("At the end of the loop a=$a and b=$b");

?>

</body></html>

}

?>

</body></html>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Loop stopped at i = 1 and num = 40

<html> <body>

<?php

$i = 0;

$num = 50;

while($i < 10)

{

$num--;

$i++;

}

echo ("Loop stopped at i = $i and num = $num");

?> </body></html>

Loop stopped at i = 10

<html> <body>

<?php

$i = 0;

$num = 0;

do {

$i++;

}while($i < 10);

echo ("Loop stopped at i = $i");

?></body></html>

<html> <body>

<?

php $array = array(11, 12, 13,14, 15);

While loop

 Do…while loop

 For Each loop

The for each statement is used to loop through arrays. For each pass the value of the

current array element is assigned to $value and the array pointer is moved by one and in

the next pass next element will be processed.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

<?php

function sum($x, $y) {

$z = $x + $y;

return $z; }

echo "5 + 10 = " . sum(5, 10) . "
";

 Break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. After coming out of a

loop immediate statement to the loop will be executed.

 Continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it

does not terminate the loop. Just like the break statement the continue statement is

situated inside the statement block containing the code that the loop executes,

preceded by a conditional test. For the pass encountering continue statement, rest

of the loop code is skipped and next pass starts.

FUNCTIONS

A function is a block of statements that can be used repeatedly in a program. A

function will not execute immediately when a page loads. A function will be executed by a

call to the function. There are two types of functions: Built-in functions and User defined

functions

User defined Functions

A user defined function declaration starts with the word function. Information can be

passed to functions through arguments. An argument is just like a variable. Arguments are

specified after the function name, inside the parentheses.

Value is 11

Value is 12

Value is 13

Value is 14

Value is 15

foreach($array as $value)

{

echo "Value is $value
";

} ?> </body></html>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Built-in functions

Array functions

Function Description

array() Creates an array

array_chunk() Splits an array into chunks of arrays

array_column() Returns the values from a single column in the input array

array_combine() Creates an array by using the elements from one "keys" array and

one "values" array

array_count_values(

)

Counts all the values of an array

array_diff() Compare arrays, and returns the differences (compare values only)

array_diff_key() Compare arrays, and returns the differences (compare keys only)

array_fill() Fills an array with values

array_fill_keys() Fills an array with values, specifying keys

array_filter() Filters the values of an array using a callback function

array_flip() Flips/Exchanges all keys with their associated values in an array

array_intersect() Compare arrays, and returns the matches (compare values only)

array_key_exists() Checks if the specified key exists in the array

array_keys() Returns all the keys of an array

array_map() Sends each value of an array to a user-made function, which returns

new values

array_merge() Merges one or more arrays into one array

array_multisort() Sorts multiple or multi-dimensional arrays

5 + 10 = 15

7 + 13 = 20

2 + 4 = 6

echo "7 + 13 = " . sum(7, 13) . "
";

echo "2 + 4 = " . sum(2, 4); ?>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

array_pad() Inserts a specified number of items, with a specified value, to an

array

array_pop() Deletes the last element of an array

array_product() Calculates the product of the values in an array

array_push() Inserts one or more elements to the end of an array

array_rand() Returns one or more random keys from an array

array_reduce() Returns an array as a string, using a user-defined function

array_replace() Replaces the values of the first array with the values from following

arrays

array_replace_recur

sive()

Replaces the values of the first array with the values from following

arrays recursively

array_reverse() Returns an array in the reverse order

array_search() Searches an array for a given value and returns the key

array_shift() Removes the first element from an array, and returns the value of

the removed element

array_slice() Returns selected parts of an array

array_splice() Removes and replaces specified elements of an array

array_sum() Returns the sum of the values in an array

array_udiff() Compare arrays, and returns the differences (compare values only,

using a user-defined key comparison function)

array_uintersect() Compare arrays, and returns the matches (compare values only,

using a user-defined key comparison function)

array_unique() Removes duplicate values from an array

array_unshift() Adds one or more elements to the beginning of an array

array_values() Returns all the values of an array

array_walk() Applies a user function to every member of an array

arsort() Sorts an associative array in descending order, according to the

value

asort() Sorts an associative array in ascending order, according to the value

compact() Create array containing variables and their values

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

count() Returns the number of elements in an array

current() Returns the current element in an array

each() Returns the current key and value pair from an array

end() Sets the internal pointer of an array to its last element

extract() Imports variables into the current symbol table from an array

in_array() Checks if a specified value exists in an array

key() Fetches a key from an array

list() Assigns variables as if they were an array

natcasesort() Sorts an array using a case insensitive "natural order" algorithm

natsort() Sorts an array using a "natural order" algorithm

next() Advance the internal array pointer of an array

prev() Rewinds the internal array pointer

range() Creates an array containing a range of elements

reset() Sets the internal pointer of an array to its first element

rsort() Sorts an indexed array in descending order

shuffle() Shuffles an array

sort() Sorts an indexed array in ascending order

uasort() Sorts an array by values using a user-defined comparison function

uksort() Sorts an array by keys using a user-defined comparison function

usort() Sorts an array using a user-defined comparison function

 Calendar Functions

The calendar extension contains functions that simplify converting between different

calendar formats. It is based on the Julian Day Count, which is a count of days starting

from January 1st, 4713 B.C. To convert between calendar formats, first convert to Julian

Day Count, then to the calendar of the user’s choice.

Function Description

cal_days_in_month() Returns the number of days in a month for a specified year and

calendar

cal_from_jd() Converts a Julian Day Count into a date of a specified calendar

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

cal_info() Returns information about a specified calendar

cal_to_jd() Converts a date in a specified calendar to Julian Day Count

easter_date() Returns the Unix timestamp for midnight on Easter of a

specified year

easter_days() Returns the number of days after March 21, that the Easter

Day is in a specified year

gregoriantojd() Converts a Gregorian date to a Julian Day Count

jddayofweek() Returns the day of the week

jdmonthname() Returns a month name

jdtogregorian() Converts a Julian Day Count to a Gregorian date

jdtounix() Converts Julian Day Count to Unix timestamp

jewishtojd() Converts a Jewish date to a Julian Day Count

juliantojd() Converts a Julian date to a Julian Day Count

unixtojd() Converts Unix timestamp to Julian Day Count

 Date Functions

The date/time functions allow to get the date and time from the server on which PHP

script runs. These functions depend on the locale settings of the server. Remember to

take daylight saving time and leap years into consideration when working with these

functions.

Function Description

checkdate() Validates a Gregorian date

date_add() Adds days, months, years, hours, minutes, and

seconds to a date

date_create_from_format() Returns a new DateTime object formatted

according to a specified format

date_create() Returns a new DateTime object

date_date_set() Sets a new date

date_default_timezone_get() Returns the default timezone used by all date/time

functions

date_default_timezone_set() Sets the default timezone used by all date/time

functions

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

date_diff() Returns the difference between two dates

date_format() Returns a date formatted according to a specified

format

date_interval_format() Formats the interval

date_isodate_set() Sets the ISO date

date_modify() Modifies the timestamp

date_parse() Returns an associative array with detailed info

about a specified date

date_sub() Subtracts days, months, years, hours, minutes, and

seconds from a date

date_sun_info() Returns an array containing info about

sunset/sunrise and twilight begin/end, for a

specified day and location

date_sunrise() Returns the sunrise time for a specified day and

location

date_sunset() Returns the sunset time for a specified day and

location

date_time_set() Sets the time

date() Formats a local date and time

getdate() Returns date/time information of a timestamp or

the current local date/time

gettimeofday() Returns the current time

gmdate() Formats a GMT/UTC date and time

gmmktime() Returns the Unix timestamp for a GMT date

gmstrftime() Formats a GMT/UTC date and time according to

locale settings

idate() Formats a local time/date as integer

localtime() Returns the local time

microtime() Returns the

microseconds

current Unix timestamp with

mktime() Returns the Unix timestamp for a date

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

strftime() Formats a local time and/or date according to

locale settings

time() Returns the current time as a Unix timestamp

timezone_name_get() Returns the name of the timezone

timezone_offset_get() Returns the timezone offset from GMT

timezone_open() Creates new DateTimeZone object

timezone_version_get() Returns the version of the timezone db

 Directory functions

The directory function allows retrieving information about directories and their contents.

Function Description

chdir() Changes the current directory

chroot() Changes the root directory

closedir() Closes a directory handle

dir() Returns an instance of the Directory class

getcwd() Returns the current working directory

opendir() Opens a directory handle

readdir() Returns an entry from a directory handle

rewinddir() Resets a directory handle

scandir() Returns an array of files and directories of a

specified directory

 Error handling functions

The error functions are used to deal with error handling and logging. The error

functions allow us to define own error handling rules, and modify the way the errors can

be logged. The logging functions allow us to send messages directly to other machines,

emails, or system logs. The error reporting functions allow us to customize what level

and kind of error feedback is given.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

Function Description

debug_backtrace() Generates a backtrace

debug_print_backtrace() Prints a backtrace

error_get_last() Returns the last error that occurred

error_log() Sends an error message to a log, to a file, or to a mail

account

error_reporting() Specifies which errors are reported

restore_error_handler() Restores the previous error handler

restore_exception_handler() Restores the previous exception handler

set_error_handler() Sets a user-defined error handler function

set_exception_handler() Sets a user-defined exception handler function

trigger_error() Creates a user-level error message

user_error() Alias of trigger_error()

debug_backtrace() Generates a backtrace
s

 File system Functions

The file system functions allow the user to access and manipulate the file system.

Function Description

basename() Returns the filename component of a path

chgrp() Changes the file group

chmod() Changes the file mode

chown() Changes the file owner

clearstatcache() Clears the file status cache

copy() Copies a file

dirname() Returns the directory name component of a path

disk_free_space() Returns the free space of a directory

disk_total_space() Returns the total size of a directory

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

fclose() Closes an open file

feof() Tests for end-of-file on an open file

fflush() Flushes buffered output to an open file

fgetc() Returns a character from an open file

fgets() Returns a line from an open file

fgetss() Returns a line, with HTML and PHP tags removed, from an

open file

file() Reads a file into an array

file_exists() Checks whether or not a file or directory exists

file_get_contents() Reads a file into a string

file_put_contents() Writes a string to a file

fileatime() Returns the last access time of a file

filectime() Returns the last change time of a file

filegroup() Returns the group ID of a file

fileinode() Returns the inode number of a file

filemtime() Returns the last modification time of a file

fileowner() Returns the user ID (owner) of a file

fileperms() Returns the permissions of a file

filesize() Returns the file size

filetype() Returns the file type

flock() Locks or releases a file

fnmatch() Matches a filename or string against a specified pattern

fopen() Opens a file or URL

fpassthru() Reads from an open file, until EOF, and writes the result to the

output buffer

fputcsv() Formats a line as CSV and writes it to an open file

fread() Reads from an open file

fscanf() Parses input from an open file according to a specified format

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

fseek() Seeks in an open file

fstat() Returns information about an open file

ftell() Returns the current position in an open file

ftruncate() Truncates an open file to a specified length

fwrite() Writes to an open file

glob() Returns an array of filenames / directories matching a specified

pattern

is_dir() Checks whether a file is a directory

is_executable() Checks whether a file is executable

is_file() Checks whether a file is a regular file

is_link() Checks whether a file is a link

is_readable() Checks whether a file is readable

is_uploaded_file() Checks whether a file was uploaded via HTTP POST

is_writable() Checks whether a file is writeable

lchgrp() Changes group ownership of symlink

lchown() Changes user ownership of symlink

link() Creates a hard link

linkinfo() Returns information about a hard link

lstat() Returns information about a file or symbolic link

mkdir() Creates a directory

move_uploaded_file() Moves an uploaded file to a new location

pathinfo() Returns information about a file path

pclose() Closes a pipe opened by popen()

popen() Opens a pipe

readfile() Reads a file and writes it to the output buffer

readlink() Returns the target of a symbolic link

realpath() Returns the absolute pathname

realpath_cache_get() Returns realpath cache entries

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

realpath_cache_size() Returns realpath cache size

rename() Renames a file or directory

rewind() Rewinds a file pointer

rmdir() Removes an empty directory

set_file_buffer() Sets the buffer size of an open file

stat() Returns information about a file

symlink() Creates a symbolic link

touch() Sets access and modification time of a file

umask() Changes file permissions for files

unlink() Deletes a file

 Math functions

Function Description

abs() Returns the absolute (positive) value of a number

acos() Returns the arc cosine of a number

acosh() Returns the inverse hyperbolic cosine of a number

asin() Returns the arc sine of a number

asinh() Returns the inverse hyperbolic sine of a number

atan() Returns the arc tangent of a number in radians

atan2() Returns the arc tangent of two variables x and y

atanh() Returns the inverse hyperbolic tangent of a number

bindec() Converts a binary number to a decimal number

ceil() Rounds a number up to the nearest integer

cos() Returns the cosine of a number

cosh() Returns the hyperbolic cosine of a number

decbin() Converts a decimal number to a binary number

dechex() Converts a decimal number to a hexadecimal number

decoct() Converts a decimal number to an octal number

deg2rad() Converts a degree value to a radian value

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

exp() Calculates the exponent of e

expm1() Returns exp(x) – 1

floor() Rounds a number down to the nearest integer

fmod() Returns the remainder of x/y

getrandmax() Returns the largest possible value returned by rand()

hexdec() Converts a hexadecimal number to a decimal number

hypot() Calculates the hypotenuse of a right-angle triangle

max() Returns the highest value in an array, or the highest value of several

specified values

min() Returns the lowest value in an array, or the lowest value of several

specified values

octdec() Converts an octal number to a decimal number

pi() Returns the value of PI

pow() Returns x raised to the power of y

rad2deg() Converts a radian value to a degree value

rand() Generates a random integer

round() Rounds a floating-point number

sin() Returns the sine of a number

sinh() Returns the hyperbolic sine of a number

sqrt() Returns the square root of a number

srand() Seeds the random number generator

tan() Returns the tangent of a number

tanh() Returns the hyperbolic tangent of a number

 String functions

Function Description

bin2hex() Converts a string of ASCII characters to hexadecimal values

chop() Removes whitespace or other characters from the right end of a

string

chr() Returns a character from a specified ASCII value

chunk_split() Splits a string into a series of smaller parts

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

convert_cyr_string() Converts a string from one Cyrillic character-set to another

convert_uudecode() Decodes a uuencoded string

convert_uuencode() Encodes a string using the uuencode algorithm

count_chars() Returns information about characters used in a string

crc32() Calculates a 32-bit CRC for a string

crypt() One-way string encryption (hashing)

echo() Outputs one or more strings

explode() Breaks a string into an array

fprintf() Writes a formatted string to a specified output stream

hex2bin() Converts a string of hexadecimal values to ASCII characters

html_entity_decode() Converts HTML entities to characters

htmlentities() Converts characters to HTML entities

implode() Returns a string from the elements of an array

join() Alias of implode()

lcfirst() Converts the first character of a string to lowercase

levenshtein() Returns the Levenshtein distance between two strings

localeconv() Returns locale numeric and monetary formatting information

ltrim() Removes whitespace or other characters from the left side of a

string

number_format() Formats a number with grouped thousands

ord() Returns the ASCII value of the first character of a string

parse_str() Parses a query string into variables

print() Outputs one or more strings

printf() Outputs a formatted string

rtrim() Removes whitespace or other characters from the right side of a

string

setlocale() Sets locale information

sha1() Calculates the SHA-1 hash of a string

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

sha1_file() Calculates the SHA-1 hash of a file

similar_text() Calculates the similarity between two strings

sprintf() Writes a formatted string to a variable

sscanf() Parses input from a string according to a format

str_ireplace() Replaces some characters in a string (case-insensitive)

str_pad() Pads a string to a new length

str_repeat() Repeats a string a specified number of times

str_replace() Replaces some characters in a string (case-sensitive)

str_shuffle() Randomly shuffles all characters in a string

str_split() Splits a string into an array

str_word_count() Count the number of words in a string

strcasecmp() Compares two strings (case-insensitive)

strchr() Finds the first occurrence of a string inside another string (alias of

strstr())

strcmp() Compares two strings (case-sensitive)

strcoll() Compares two strings (locale based string comparison)

strcspn() Returns the number of characters found in a string before any part

of some specified characters are found

stripos() Returns the position of the first occurrence of a string inside

another string (case-insensitive)

stristr() Finds the first occurrence of a string inside another string (case-

insensitive)

strlen() Returns the length of a string

strncmp() String comparison of the first n characters (case-sensitive)

strpbrk() Searches a string for any of a set of characters

strpos() Returns the position of the first occurrence of a string inside

another string (case-sensitive)

strrchr() Finds the last occurrence of a string inside another string

strrev() Reverses a string

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

strrpos() Finds the position of the last occurrence of a string inside another

string (case-sensitive)

strspn() Returns the number of characters found in a string that contains

only characters from a specified charlist

strstr() Finds the first occurrence of a string inside another string (case-

sensitive)

strtok() Splits a string into smaller strings

strtolower() Converts a string to lowercase letters

strtoupper() Converts a string to uppercase letters

strtr() Translates certain characters in a string

substr() Returns a part of a string

substr_compare() Compares two strings from a specified start position (binary safe

and optionally case-sensitive)

substr_count() Counts the number of times a substring occurs in a string

substr_replace() Replaces a part of a string with another string

trim() Removes whitespace or other characters from both sides of a

string

vfprintf() Writes a formatted string to a specified output stream

vprintf() Outputs a formatted string

vsprintf() Writes a formatted string to a variable

wordwrap() Wraps a string to a given number of characters

 Miscellaneous Functions

Function Description

connection_aborted() Checks whether the client has disconnected

connection_status() Returns the current connection status

connection_timeout() Deprecated in PHP 4.0.5. Checks whether the script has

timed out

constant() Returns the value of a constant

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8651 INTERNET PROGRAMMING

define() Defines a constant

defined() Checks whether a constant exists

die() Prints a message and exits the current script

eval() Evaluates a string as PHP code

exit() Prints a message and exits the current script

get_browser() Returns the capabilities of the user's browser

halt_compiler() Halts the compiler execution

pack() Packs data into a binary string

php_check_syntax() Deprecated in PHP 5.0.5

php_strip_whitespace() Returns the source code of a file with PHP comments and

whitespace removed

sleep() Delays code execution for a number of seconds

sys_getloadavg() Gets system load average

time_nanosleep() Delays code execution for a number of seconds and

nanoseconds

time_sleep_until() Delays code execution until a specified time

uniqid() Generates a unique ID

unpack() Unpacks data from a binary string

usleep() Delays code execution for a number of microseconds

