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 Electromagnetic Mode Theory for Optical Propagation 

  

1.  Electromagnetic Waves  

In order to obtain an improved model for the propagation of light in an optical 

fiber, electromagnetic wave theory must be considered. The basis for the study 

of electromagnetic wave propagation is provided by Maxwell’s equations. For a 

medium with zero conductivity these vector relationships may be written in 

terms of the electric field E, magnetic field H, electric flux density D and 

magnetic flux density B as the curl equations: 

 

where ε is the dielectric permittivity and μ is the magnetic permeability of the 

medium. Substituting for D and B and taking the curl of Eqs (1.18) and 1.19) 

gives:  
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Then using the divergence conditions of Eqs (1.20) and (1.21) with the vector 

identity:

 

where∇2 is the Laplacian operator. For rectangular Cartesian and cylindrical 

polar coordinates the above wave equations hold for each component of the 

field vector, every component satisfying the scalar wave equation 

 

Where ψ may represent a component of the E or H field and up is the phase 

velocity (velocity of propagation of a point of constant phase in the wave) in the 

dielectric medium. It follows that: 

 

Where μr and εr are the relative permeability and permittivity for the dielectric 

medium and μ0 and ε0 are the permeability and permittivity of free space. The 

velocity of light in free space c is therefore: 
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If planar waveguides, described by rectangular Cartesian coordinates (x, y, z), or 

circular fibers, described by cylindrical polar coordinates (r, φ, z), are 

considered, then the Laplacian operator takes the form: 

 

respectively. It is necessary to consider both these forms for a complete 

treatment of optical propagation in the fiber, although many of the properties of 

interest may be dealt with using Cartesian coordinates.The basic solution of the 

wave equation is a sinusoidal wave, the most important form of which is a 

uniform plane wave given by 

 

where ω is the angular frequency of the field, t is the time, k is the propagation 

vector which gives the direction of propagation and the rate of change of phase 

with distance, while the components of r specify the coordinate point at which 

the field is observed. When λ is the optical wavelength in a vacuum, the 

magnitude of the propagation vector or the vacuum phase propagation 

constant k (where k = |k|) is given by: 

 

It should be noted that in this case k is also referred to as the free space wave 

number. 
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2.  Modes in a Planar Guide 

  

The planar guide is the simplest form of optical waveguide. We may assume it 

consists of a slab of dielectric with refractive index n1 sandwiched between two 

regions of lower refractive index n2. In order to obtain an improved model for 

optical propagation it is useful to consider the interference of plane wave 

components within this dielectric waveguide.  

The conceptual transition from ray to wave theory may be aided by 

consideration of a plane monochromatic wave propagating in the direction of 

the ray path within the guide (see Figure 1.8(a)). As the refractive index within 

the guide is n1, the optical wavelength in this region is reduced to λ/n1, while 

the vacuum propagation constant is increased to n1k. When θ is the angle 

between the wave propagation vector or the equivalent ray and the guide axis, 

the plane wave can be resolved into two component plane waves propagating in 

the z and x directions, as shown in Figure 1.8(a). 
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Figure 1.8 The formation of a mode in a planar dielectric guide: (a) a plane 

wave propagating in the guide shown by its wave vector or equivalent ray – the 

wave vector is resolved into components in the z and x directions; (b) the 

interference of plane waves in the guide forming the lowest order mode (m = 0) 

[Source: htpp://img.brainkart.com] 

The component of the phase propagation in the Z direction is given by: 

 

The component of the phase propagation constant in the x direction βx is: 

 

The component of the plane wave in the x direction is reflected at the interface 

between the higher and lower refractive index media. When the total phase 

change* after two successive reflections at the upper and lower interfaces 

(between the points P and Q) is equal to 2mπ radians, where m is an integer, 

then constructive interference occurs and a standing wave is obtained in 

the x direction. This situation is illustrated in Figure 1.8(b), where the 

interference of two plane waves is shown. In this illustration it is assumed that 

the interference forms the lowest order (where m = 0) standing wave, where the 

electric field is a maximum at the center of the guide decaying towards zero at 

the boundary between the guide and cladding. However, it may be observed 

from Figure 1.8(b) that the electric field penetrates some distance into the 

cladding, a phenomenon which is discussed. 
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Figure 1.9 Physical model showing the ray propagation and the corresponding 

transverse  electric (TE) field patterns of three lower order models (m =1, 2, 3) 

in the planar dielectric guide 

[Source: htpp://img.brainkart.com] 

Nevertheless, the optical wave is effectively confined within the guide and the 

electric field distribution in the x direction does not change as the wave 

propagates in the z direction. The sinusoidally varying electric field in 

the z direction is also shown in Figure 1.8(b). The stable field distribution in the 

x direction with only a periodic z dependence is known as a mode. A specific 

mode is obtained only when the angle between the propagation vectors or the 

rays and the interface have a particular value, as indicated in Figure 1.8(b). In 

effect, Eqs (1.34) and (1.35) define a group or congruence of rays which in the 

case described represents the lowest order mode. Hence the light propagating 
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within the guide is formed into discrete modes, each typified by a distinct value 

of θ. 

 To visualize the dominant modes propagating in the z direction we may 

consider plane waves corresponding to rays at different specific angles in the 

planar guide. These plane waves give constructive interference to form standing 

wave patterns across the guide following a sine or cosine formula. Figure 2.9 

shows examples of such rays for m = 1, 2, 3, together with the electric field 

distributions in the x direction. It may be observed that m denotes the number of 

zeros in this transverse field pattern. In this way m signifies the order of the 

mode and is known as the mode number. 

 When light is described as an electromagnetic wave it consists of a periodically 

varying electric field E and magnetic field H which are orientated at right 

angles to each other. The transverse modes shown in Figure 1.9 illustrate the 

case when the electric field is perpendicular to the direction of propagation and 

hence Ez = 0, but a corresponding component of the magnetic field H is in the 

direction of propagation. In this instance the modes are said to be transverse 

electric (TE). Alternatively, when a component of the E field is in the direction 

of propagation, but Hz =0, the modes formed are called transverse magnetic 

(TM). The mode numbers are incorporated into this nomenclature by referring 

to the Tem and TMm modes, as illustrated for the transverse electric modes 

shown in Figure 1.9. When the total field lies in the transverse plane, transverse 

electromagnetic (TEM) waves exist where both Ez and Hz are zero. However, 

although TEM waves occur in metallic conductors (e.g. coaxial cables) they are 

seldom found in optical waveguides. 
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3.  Phase and Group Velocity 

 

[Source: htpp://img.brainkart.com] 

The envelope of the wave package or group of waves travels at a group velocity 

υg With in all electromagnetic waves, whether plane or otherwise, there are 

points of constant phase. For plane waves these constant phase points form a 

surface which is referred to as a wave front. As a monochromatic light wave 

propagates along a waveguide in the z direction these points of constant phase 

travel at a phase velocity υp given by 

 

where ω is the angular frequency of the wave. However, it is impossible in 

practice to produce perfectly monochromatic light waves, and light energy is 

generally composed of a sum of plane wave components of different 

frequencies. Often the situation exists where a group of waves with closely 

similar frequencies propagate so that their resultant forms a packet of waves. 

The formation of such a wave packet resulting from the combination of two 

waves of slightly different frequency propagating together is illustrated in 
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Figure 1.10. This wave packet does not travel at the phase velocity of the 

individual waves but is observed to move at a group velocity υg given by 

 

The group velocity is of greatest importance in the study of the transmission 

character- istics of optical fibers as it relates to the propagation characteristics of 

observable wave groups or packets of light. If propagation in an infinite 

medium of refractive index n1 is considered, then the propagation constant may 

be written as: 

 

Where c is the velocity of light in free space. Equation (1.38) follows from Eqs 

(1.33) and (1.34) where we assume propagation in the z direction only and 

hence cos θ is equal to unity. Using Eq. (1.36) we obtain the following 

relationship for the phase velocity: 

 

Similarly, employing Eq. (1.37), where in the limit δω/δβ becomes dω/dβ, the 

group velocity: 

 

The parameter Ng is known as the group index of the guide. 


