
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-IV EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

BINARY SEARCH TREE OR SEARCH TREE ADT
Definition: -

When we place constraints on how data elements can be stored in the tree, the items must be stored
in such a way that the key values in left subtree of the root less than the key value of the root, and then the
key values of all the node in the right subtree of the root are greater than the key values of the root. When
this relationship holds in the entire node in the tree then the tree is called as a binary search tree.

The property that makes a binary tree into a binary search tree. That is every node X in the tree, the
values of all the keys in its left subtree are smaller than the key value in X, and the values of all the keys in its
right subtree are larger than the key value in X.
Example:

Operations of BST.

1. Insertion

2. Deletion

3. Find

4. Find min

5. Find max

6. Retrieve

Notes: when you’re constructing the binary tree the given elements are read from first.
Example:

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-IV EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

{
int data;
struct treenode *left;
struct treenode *right;

};
Routine for perform find.

struct treenode * find(struct treenode *T,int x)
{

if(T==NULL)
return NULL;

else if(x<T->data)
return find(T->left,x);

else if(x>T->data)
return find(T->right,x);

else

}

return T;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-IV EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Routine for perform insertion.
struct treenode* insert(struct treenode *t,int x)
{

if(t==NULL)

t=(struct treenode *)malloc(sizeof(struct treenode));
t->data=x;
t->left=t->right=NULL;
return t;

}
else if(x<t->data)
t->left=insert(t->left,x); else if(x>t->data)
t->right=insert(t->right,x);
return t;
}

ROUTINE FOR PREFORM DELETION
struct treenode * findmin(struct treenode *t)
{

if(t==NULL)
return NULL; /* There is no element in the tree */

else if(t->left==NULL) /* Go to the left sub tree to find the min element */
return t;

else
return findmin(t->left);

}

struct treenode* deletion(struct treenode *t,int x)
{

struct treenode *temp;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-IV EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

if(t==NULL)
printf("Element not found\n");

else if(x < t->data)
t->left = deletion (t->left,x);

else if(x > t->data)
t->right = deletion (t->right,x);

else if(T->right && T->left)
{

}
else

{

/* Here we will replace with minimum element in the right sub tree */
temp = findmin(t->right);
t->data = temp->data ;

/* As we replaced it with some other node, we have to delete that node */
t->right = deletion (t->right,t->data);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-IV EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

/* If there is only one or zero children then we can directly remove it from the tree
and connect its parent to its child */

temp = T;
if(t->left==NULL)
t = t->right;
else if(T->right ==
NULL) t = t->left;
free(temp); /* temp is longer required */

}
return T;

}

void inorder(struct treenode *t)
{

if(t!=NULL)
{
inorder(t->left);
printf("%d \t",t
>data);
 inorder(t->right);

}
}
Applications of Tree
1. Manipulate hierarchical data.
2. Make information easy to search 3. Manipulate sorted lists of data.
4. As a workflow for compositing digital images for visual effects.
5. Router algorithms

DIFFERENCE BETWEEN BINARY AND BINARY SEARCH TREES:

BINARY TREE BINARY SEARCH TREE

It is a tree with only two
children

It is also a tree with only two children.

It has no restrictions regarding
its children

In this the left child is lesser than the parent and the right
child is greater than the parent

	BINARY SEARCH TREE OR SEARCH TREE ADT
	Routine for perform find.
	Routine for perform insertion.
	Applications of Tree
	DIFFERENCE BETWEEN BINARY AND BINARY SEARCH TREES:

