
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

IOS - MEDIA LAYER

 Beautiful graphics and high-fidelity multimedia are hallmarks of the OS X user

experience. Take advantage of the technologies of the Media layer to incorporate 2D and 3D

graphics, animations, image effects, and professional-grade audio and video functionality

into your app.

Supported Media Formats

 OS X supports more than 100 media types, covering a range of audio, video, image,

and streaming formats. Table 3-1 lists some of the more common supported file formats.

Table 3-1 Partial list of formats supported in OS X

Image formats PICT, BMP, GIF, JPEG, TIFF, PNG, DIB, ICO, EPS, PDF

Audio file and

data formats

AAC, AIFF, WAVE, uLaw, AC3, MPEG-3, MPEG-4

(.mp4, .m4a), .snd, .au, .caf, Adaptive multi-rate (.amr)

Video file

formats

AVI, AVR, DV, M-JPEG, MPEG-1, MPEG-2, MPEG-4, AAC, OpenDML,

3GPP, 3GPP2, AMC, H.264, iTunes (.m4v), QuickTime (.mov, .qt)

Web streaming

protocols
HTTP, RTP, RTSP

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Graphics Technologies

 A distinctive quality of any OS X app is high-quality graphics in its user interface. And

on a Retina display, users are more aware than ever of your app’s graphics.

 The simplest, most efficient, and most common way to ensure high-quality graphics

in your app is to use the standard views and controls of the AppKit framework, along with

pre - rendered images in different resolutions. In this way, you let the system do the work of

rendering the app’s UI appropriately for the current display.

 Occasionally, you might need to go beyond off-the-shelf views and simple graphics.

In these situations, you can take advantage of the powerful OS X graphics technologies. The

following sections describe some of these technologies; for summaries of all technologies

see Media Layer Frameworks.

Graphics and Drawing

OS X offers several system technologies for graphics and drawing. Many of these

technologies provide support for making your rendered content look good at different

screen resolutions. To learn how to make sure that your app looks good on a high-resolution

display, see High Resolution Guidelines for OS X.

Cocoa Drawing

 It supports drawing in both standard and custom color spaces and it supports content

manipulations using graphics transforms. Drawing calls made from Cocoa are composited

along with all other Quartz 2D content. You can even mix Quartz 2D drawing calls (and

drawing calls from other system graphics technologies) with Cocoa calls in your code.

 The AppKit framework is described in AppKit. For more information on how to draw

using Cocoa features, see Cocoa Drawing Guide.

Metal

 Metal provides the lowest-overhead access to the GPU, enabling you to maximize the

graphics and compute potential of your app. With a streamlined API, precompiled shaders,

and support for efficient multi-threading, Metal can take your game or graphics app to the

next level of performance and capability.

The Metal framework is described in Metal Programming Guide, Metal Shading Language

Guide, and the associated references.

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW5
https://developer.apple.com/library/archive/documentation/GraphicsAnimation/Conceptual/HighResolutionOSX/Introduction/Introduction.html#//apple_ref/doc/uid/TP40012302
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CocoaApplicationLayer/CocoaApplicationLayer.html#//apple_ref/doc/uid/TP40001067-CH274-SW6
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40003290
https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40014221

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Other Frameworks for Graphics and Drawing

 In addition to AppKit (specifically, its Cocoa drawing interface), there are several

other important frameworks for graphics and drawing. By design, Cocoa drawing integrates

well with the other graphics and drawing technologies listed next.

 Core Graphics (CoreGraphics.framework). Core Graphics (also known as Quartz 2D)

offers native 2D vector- and image-based rendering capabilities that are resolution- and

device-independent. These capabilities include path-based drawing, painting with

transparency, shading, drawing of shadows, transparency layers, color management,

antialiased rendering, and PDF document generation. The Core Graphics framework is in

the Application Services umbrella framework.

 Core Animation. Core Animation enables your app to create fluid animations using

advanced compositing effects. It defines a hierarchical view-like abstraction that mirrors

a hierarchy of views and is used to perform complex animations of user interfaces. Core

Animation is implemented by the Quartz Core framework (QuartzCore.framework) (for

more information, see Core Animation).

 SpriteKit (SpriteKit.framework). SpriteKit provides the tools and methods for creating

and rendering and animating textured images, or sprites. You use graphical editors for

creating sprites, and then use those sprites in scenes that simulate game physics. In

addition to sprites, you can add lights, emitters, and different kinds of fields to scenes.

SpriteKit animates your scene and calls back to your code for events such as collisions. To

learn more, see Sprite Kit.

 Scene Kit (SceneKit.framework). Scene Kit provides a high-level, Objective-C graphics API

that you can use to efficiently load, manipulate, and render 3D scenes. Powerful and

easy-to-use Scene Kit integrates well with Core Animation and SpriteKit, allowing you to

use built-in materials or custom GLSL shaders to render your 3D scenes (for more

information, see Scene Kit).

 Metal Metal.framework provides extremely low-overhead access to the capabilities of

modern GPUs and enables high-performance 2D and 3D graphics, and parallel

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW29
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW34
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW33

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

computational tasks. A more flexible and efficient alternative to OpenGL and OpenCL,

Metal is intended for use by games and graphics-intensive applications that require fine-

grained control over the GPU. To learn more about Metal, see Metal Programming

Guide and Metal Shading Language Guide

 MetalKit MetalKit.framework provides libraries of commonly needed functions and

classes to reduce the overall time for developing a Metal application. For more

information, see MetalKit Framework Reference and MetalKit Functions Reference.

 OpenGL (OpenGL.framework). OpenGL is an open, standards-based technology for

creating and animating real-time 2D and 3D graphics. It is primarily used for games and

other apps with real-time rendering needs. To learn more about OpenGL in OS X,

see OpenGL.

 GLKit (GLKit.framework). GLKit provides libraries of commonly needed functions and

classes that reduce the effort required to create shader-based apps or to port existing

apps that rely on fixed-function vertex or fragment processing provided by earlier

versions of OpenGL ES or OpenGL. To learn more about the GLKit framework, see GLKit.

Text, Typography, and Fonts

 OS X provides extensive support for advanced typography for Cocoa apps. With this

support, your app can control the fonts, layout, typesetting, text input, and text storage

when managing the display and editing of text. For the most basic text requirements, you

can use the text fields, text views, and other text-displaying objects provided by the AppKit

framework.

 There are two technologies to draw upon for more sophisticated text, font, and

typography needs: the Cocoa text system and the Core Text API.

 Cocoa text system. AppKit provides a collection of classes, known as the Cocoa text

system, that together provide a complete set of high-quality typographical services.

 Core Text (CoreText.framework). The Core Text framework contains low-level interfaces

for laying out Unicode text and handling Unicode fonts.

https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40014221
https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40014221
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/metalkit/metalkit_functions
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW8
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40001067-CH273-SW24

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Images

 Both AppKit and Quartz let you create objects that represent images

(NSImage and CGImageRef) from various sources, draw these images to an appropriate

graphics context, and even composite one image over another according to a given blending

mode. Beyond the native capabilities of AppKit and Core Graphics, you can do other things

with images using the following frameworks:

 Image Capture Core (ImageCaptureCore.framework). The Image Capture Core

framework enables your app to browse locally connected or networked scanners and

cameras and images.

 Core Image. Core Image is an image processing technology that allows developers to

process images with system-provided image filters, create custom image filters, and

detect features in an image.

 Image Kit. Image Kit is built on top of the Image Capture Core framework.

 Image I/O (ImageIO.framework). The Image I/O framework helps you read image data

from a source and write image data to a destination. Sources and destinations can be

URLs, Core Foundation data objects, and Quartz data consumers and data providers.

Color Management

ColorSync is the color management system for OS X. It provides essential services for fast,

consistent, and accurate color reproduction, proofing, and calibration. It also provides an

interface for accessing and managing systemwide settings for color devices such as displays,

printers, cameras, and scanners.

Printing

 OS X implements printing support using a collection of APIs and system services that

are available to all app environments.

Table 3-2 Features of the OS X printing system

Feature Description

https://developer.apple.com/documentation/appkit/nsimage
https://developer.apple.com/documentation/coregraphics/cgimageref

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

AirPrint
Users can print to an AirPrint-enabled printer on their network

without having to use a third-party driver.

CUPS

Common UNIX Printing System (CUPS), an open source architecture

used to handle print spooling and other low-level features, provides

the underlying support for printing.

Desktop

printers

Desktop printers offer users a way to manage printing and print jobs

from the Dock or desktop.

Fax support
Fax support means that users can fax documents directly from the

Print dialog.

Native PDF

support

PDF as a native data type lets any app easily save textual and

graphical data to the device-independent PDF format.

PostScript

support

PostScript support allows apps to use legacy third-party drivers to

print to PostScript Level 2–compatible and Level 3–compatible

printers and to convert PostScript files directly to PDF.

Print preview
The print preview capability lets users see documents through a PDF

viewer app prior to printing.

Printer

discovery

Printer discovery enables users to detect, configure, and add to

printer lists those printers that implement Bluetooth or Bonjour.

Raster printers

(support for)

This support allows apps to print to raster printers using legacy third-

party drivers.

Speedy

spooling

Speedy spooling enables apps that use PDF to submit PDF files

directly to the printing system instead of spooling individual pages.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Audio Technologies

OS X includes support for high-quality audio recording, synthesis, manipulation, and

playback. The frameworks in the following list are ordered from high level to low level, with

the AV Foundation framework offering the highest-level interfaces you can use. When

choosing an audio technology, remember that higher-level frameworks are easier to use and,

for this reason, are usually preferred. Lower-level frameworks offer more flexibility and

control but require you to do more work.

 AV Foundation (AVFoundation.framework). AV Foundation supports audio playback,

editing, analysis, and recording.

 OpenAL (OpenAL.framework). OpenAL implements a cross-platform standard API for 3D

audio.

 Core Audio (CoreAudio.framework). Core Audio consists of a set of frameworks that

provide audio services that support recording, playback, synchronization, signal

processing, format conversion, synthesis, and surround sound.

Video Technologies

 When choosing a video technology, remember that the higher-level frameworks

simplify your work and are, for this reason, usually preferred.

 The frameworks in the following list are ordered from highest to lowest level, with

the AV Foundation framework offering the highest-level interfaces you can use.

 AVKit (AVKit.framework). AV Kit supports playing visual content in your application using

the standard controls.

 AV Foundation (AVFoundation.framework). AV Foundation supports playing, recording,

reading, encoding, writing, and editing audiovisual media.

 Core Media (CoreMedia.framework). Core Media provides a low-level C interface for

managing audiovisual media. With the Core Media I/O framework, you can create plug-

ins that can access media hardware and that can capture video and mixed audio and

video streams.

 Core Video (CoreVideo.framework). Core Video provides a pipeline model for digital

video between a client and the GPU to deliver hardware-accelerated video processing

while allowing access to individual frames.

