5.MULTI STAGE GRAPH

A multistage graph G = (V, E) is a directed graph where vertices are partitioned into k (where k > 1) number of disjoint subsets $S = \{s_1, s_2, ..., s_k\}$ such that edge (u, v) is in E, then $u \in s_i$ and $v \in s_{i+1}$ for some subsets in the partition and $|s_i| = |s_k| = 1$.

The vertex $s \in s_1$ is called the **source** and the vertex $t \in s_k$ is called **sink**.

G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is represented by c(i, j). Hence, the cost of path from source s to sink t is the sum of costs of each edges in this path.

The multistage graph problem is finding the path with minimum cost from source s to sink t.

Example

Consider the following example to understand the concept of multistage graph.

According to the formula, we have to calculate the cost (i, j) using the following steps

Step-1: Cost (K-2, j)

In this step, three nodes (node 4, 5. 6) are selected as \mathbf{j} . Hence, we have three options to choose the minimum cost at this step.

$$Cost(3, 4) = min\{c(4, 7) + Cost(7, 9), c(4, 8) + Cost(8, 9)\} = 7$$

$$Cost(3, 5) = min\{c(5, 7) + Cost(7, 9), c(5, 8) + Cost(8, 9)\} = 5$$

$$Cost(3, 6) = min\{c(6, 7) + Cost(7, 9), c(6, 8) + Cost(8, 9)\} = 5$$

Step-2: Cost (K-3, j)

Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. So, the value i = 2 and j = 2 and 3.

$$Cost(2, 2) = min\{c(2, 4) + Cost(4, 8) + Cost(8, 9), c(2, 6) + Cost(8, 9)\}$$

$$Cost(6, 8) + Cost(8, 9)$$
 = 8

$$Cost(2, 3) = \{c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8) + Cost(8, 9), c(3, 6) + Cost(6, 8) + Cost(8, 9)\} = 10$$

Step-3: Cost (K-4, j)

$$Cost(1, 1) = \{c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) + Cost(5, 8) + Cost(8, 9)\} = 12$$

$$c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9)) = 13$$

Hence, the path having the minimum cost is $1 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 9$.