### Plate Girders - Behavior Of Components

### 5.1 Design for plate girder with thick web

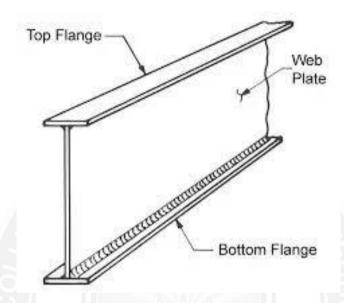



Fig 5.1 Plate girder

### Design for plate girder with thick web

# Example 1

Design a welded plate girder of 30m span to support a uniformly distributed love load of 100KN/m over the span using the following data. Yield stress of steel is 250 N/mm<sup>2</sup>, top flange restrained laterally. Design the cross sectional details of the plate girder to confirm to the specifications of IS 800-2007

#### Given data:

effective span of girder = 30 m

Distributed live load = 100KN/m

Yield stress of steel =  $250 \text{ N/mm}^2$ 

#### **Step 1**: Load on plate girder

load on girder =  $(1.5 \times 100 \times 30)$ 

= 4500KN

Assume self weight 
$$= (4500/200)$$

$$= 22.5KN/m$$

Total factored load 
$$= 100 + 22.5$$

$$= 122.5 \text{ KN/m}$$

Step 2: Bending moments and shear force

Md = 
$$(WL^2/8)$$
  
=  $(122.5 \times 30^2/8)$   
=  $13781KNm$   
Vd =  $(WL/2)$   
=  $(122.5 \times 30/2)$   
=  $1837.5KN$ 

Step 3: Cross section of girder

Is 800 2007, page no. 63, 64

depth of plate girder

D = 
$$[(MK/fy)]^0.33$$

$$K = (d/tw) < 200 \in$$

Yield stress ration

$$€ = (250 / fy)$$
= (250 / 250)
= 1
$$K = 200 €$$

$$= 200 \times 1$$

$$= 200$$

D = 
$$[(13781 \times 10^6 \times 200 / 250)]^0.33$$

= 2060 mm

adopt overall depth D = 2000mm

Allowing for 50mm flange plates

Depth of web d = 
$$2000 - 100$$
  
=  $1900 \text{ mm}$ 

Thickness of web

Tw = 
$$d / 200 \times 1$$

$$= 1900 / 200$$

$$=9.5 \text{ mm}$$

Tw = 
$$d / 67 \times 1$$

$$= 1900 / 67$$

$$= 28.3 \text{ mm}$$

adopt 25mm thick and 1900mm deep web

Width of flange

Width of flange 
$$= 0.2 d$$
 to  $0.3 d$ 

$$= 0.2 \times 1900 \text{ to } 0.3 \times 1900$$

$$= 380 \text{ to } 570$$

$$= 450 \text{ mm}$$

# adopt width of flange is 450mm

Check for plastic and compact section, the ratio

$$b / tf < 9.4€$$

$$€ = 1$$

$$tf = 50mm$$

$$bf = 450mm$$

$$450 / 50 = 9$$

= 9

The ratio of satisfies the plastic section

**Step 4**: Moment capacity

The moment capacity of the plate girder is

Is 800 2007, page no. 53

Md = [ 
$$(\beta b \times Zp \times fy) / \gamma mo$$
]  
 $\beta b$  = 1  
 $Zp$  = [  $(2 \times bf \times tf (D - tf) / 2) + (tw \times d^2) / 4$  ]  
= [  $(2 \times 450 \times 50 (2000 - 50) / 2) + (25 \times 1900^2) / 4$  ]  
=  $66.43 \times 10^6 mm^3$   
Md = [  $(1 \times 66.43 \times 10^6 \times 250) / 1.1$ ]  
=  $15097 \text{ KNm} > 13781 \text{KNm}$ 

Hence the section is safe

Step 5: Shear capacity

Is 800 2007, page no. 59

V < Vd

# Design shear strength

Vd = Vn / 
$$\gamma$$
mo  
Vn = Vp  
Vp = [(Av x fyw) /  $\sqrt{3}$ ]  
Av = d x tw  
= 1900 x 25  
= 47500mm^2  
Vp = [(Av x fyw) /  $\sqrt{3}$ ]  
= [(47500 x 250) /  $\sqrt{3}$ ]  
= 68560.03x 10^3 N  
Vd = Vp /  $\gamma$ mo  
= 4099186 / 1.1  
= 6232.75 KN > 1837.5 KN

Hence the section is safe

Step 6: Check for bearing stiffeners

Is 800 2007, page no. 67

Fw = 
$$(b1 + n2)$$
 tw  $(fy / \gamma mo)$ 

Minimum stiffeners bearing length

b1 = 
$$bf/2$$
  
=  $450/2$   
=  $225mm$   
n2 =  $2.5 \times 50$   
=  $125mm$ 

Fw = 
$$(b1 + n2)$$
 tw  $(fy / \gamma mo)$   
=  $(225 + 125)$  x  $25$  x  $(250 / 1.1)$   
=  $1988.63$  x  $10^3$  KN >  $1837$  KN

# Hence safe

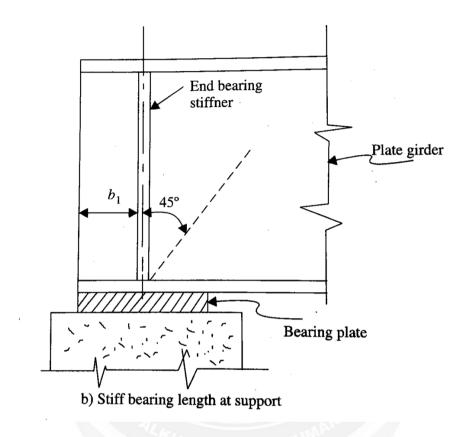



Fig.5.2 Stiff bearing