ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Approved by AICTE and affiliated to Anna University

(An ISO Certified Institution)

INDEX

	File Description	Page Number
- 1.	Course related to Environment And Sustainability (Objective, Syllabus, Outcome)	2-24
2.	Course related to Professional Ethics	25-32
3.	Course related to Human Values (Objective, Syllabus, Outcome)	33-35

PRINCIPAL Rohini College of Engineering & Technology Anjugramam Kanyakumari Main Road, Palkulam, Variyoor (P.O.) - 629 401 Kanyakumari District, Tamil Nadu.

Details of course related to Environment and Sustainability

List of courses

- 1. Environmental Science and Engineering
- 2. Engineering Geology
- 3. Municipal Solid Waste
- 4. Environmental and Agriculture
- 5. Air Pollution and Control Engineering
- 6. Renewable Energy Systems
- 7. Green Computing
- 8. Water Supply Engineering
- 9. Wastewater Engineering
- 10. Water and Waste Water Analysis Laboratory
- 11. Irrigation and Environmental Engineering Drawing
- 12. Power Plant engineering.
- 13. Renewable Energy Systems Laboratory
- 14. Energy Resources
- 15. Soil and Water Conservation Engineering

Course Name and code

Course Name	Course Code
1.Environmental Science and Engineering	GE 8291
2. Engineering Geology	CE8392
3. Municipal Solid Waste Management	EN6501
4. Environmental and Agriculture	OA1551
5. Air Pollution and Control Engineering	CE8005
6. Renewable Energy Systems	EE8703
7.Green Computing	CS8078
8.Water SupplyEngineering	EN8491
9.Wastewater Engineering	EN8592
10.Water and Waste Water Analysis Laboratory	CE8512
11.Irrigation and Environmental Engineering Drawing	CE8612
12.Power Plant engineering	ME8792
13.Renewable Energy Systems Laboratory	EE8712
14. Energy Resources	TE4002
15.Soil and Water Conservation Engineering	AI3402

COURSE OBJECTIVES

1.Environmental Science and Engineering

- \checkmark To study the nature and facts about environment.
- ✓ To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- \checkmark To study the interrelationship between living organism and environment.
- ✓ To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- ✓ To study the dynamic processes and understand the features of the earth"s interior and surface.
- ✓ To study the integrated themes and biodiversity, natural resources, pollution control and waste management

2. Engineering Geology

✓ At the end of this course the students will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and to apply this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor.

3. Municipal Solid Waste

✓ To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

4. Environmental and Agriculture

✓ To emphasize on the importance of environment and agriculture on changing globalscenario and the emerging issues connected to it.

5.Air Pollution and Control Engineering

✓ To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

6. Renewable Energy Systems

- ✓ Awareness about renewable Energy Sources and technologies.
- \checkmark Adequate inputs on a variety of issues in harnessing renewable Energy.
- ✓ Recognize current and possible future role of renewable energy sources.

7. Green Computing

- ✓ To learn the fundamentals of Green Computing.
- ✓ To analyze the Green computing Grid Framework.

- \checkmark To understand the issues related with Green compliance.
- \checkmark To study and develop various case studies.

8. Green Computing

✓ To equip the students with the principles and design of water treatment units and distribution system.

9.Wastewater Engineering

✓ The objectives of this course is to help students develop the ability to apply basicunderstanding of physical, chemical, and biological phenomena for successful design,operation and maintenance of sewage treatment plants.

10.Water and Waste Water Analysis Laboratory

- \checkmark To analyse the physical, chemical and biological characteristics of water and wastewater.
- \checkmark To quantify the dosage requirement for coagulation process
- \checkmark To study the growth of micro-organism and its quantification
- \checkmark To quantify the sludge

11. Irrigation and Environmental Engineering Drawing

✓ At the end of the semester, the student shall conceive, design and draw the irrigationand environmental engineering structures in detail showing the plan, elevation andSections.

12. Power Plant engineering

 Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

13.Renewable Energy Systems Laboratory

- ✓ To train the students in Renewable Energy Sources and technologies.
- ✓ To provide adequate inputs on a variety of issues in harnessing Renewable Energy.
- \checkmark To recognize current and possible future role of Renewable energy sources.

14. Energy Resources

- \checkmark To explain concept of various forms of Non-renewable and renewable energy.
- ✓ To outline division aspects and utilization of renewable energy sources for both domestics and industrial applications.
- ✓ To study the environmental and cost economics of using renewable energy sources compared to fossil fuels.

DETAILED SYLLABUS OF EACH COURSE

GE8291

ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C

3003

12

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards,Biological hazards in the environment – concept of an ecosystem – structure and function of anecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flowin the ecosystem – ecological succession processes – Introduction, types, characteristic features,structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d)aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversitydefinition: genetic, species and ecosystem diversity – biogeographical classification of India – value ofbiodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots ofbiodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situconservation of biodiversity. Field study of common plants, insects, birdsField study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistryChemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere -formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control ofparticulate and gaseous emission, Control of SO2, NOX, CO and HC) (b) Water pollution : Physicaland chemical properties of terrestrial and marine water and their environmental significance; Waterquality parameters – physical, chemical and biological; absorption of heavy metals - Water treatmentprocesses. (c) Soil pollution - soil waste management: causes, effects and control measures ofmunicipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclearhazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern

10

agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energyneeds, renewable and non renewable energy sources, use of alternate energy sources. EnergyConversion processes – Biogas – production and uses, anaerobic digestion; case studies – Landresources: Land as a resource, land degradation, man induced landslides, soil erosion anddesertification – role of an individual in conservation of natural resources – Equitable use of resourcesfor sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins – Biochemicaldegradation of pollutants, Bioconversion of pollutants.Field study of local area to document environmental assets – river / forest / grassland / hill /mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – waterconservation, rain water harvesting, watershed management – resettlement and rehabilitation ofpeople; its problems and concerns, case studies – role of non-governmental organizationenvironmental ethics: Issues and possible solutions – 12 Principles of green chemistrynuclearaccidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products –environment production act – Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rules; 1998 and amendmentsscheme oflabeling of environmentally friendly products (Ecomark). enforcement machinery involved inenvironmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and childwelfare –Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology inenvironment and human health – Case studies.

TOTAL : 45 PERIODS

TEXT BOOKS:

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
- 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

REFERENCES:

- 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, 2007.
- 2. ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad, 2015.

6

- G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India PVT, LTD, Delhi, 2014.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.

CE7392ENGINEERING GEOLOGYL T P C

UNIT I PHYSICAL GEOLOGY

Geology in civil engineering – branches of geology – structure of earth and its composition weathering of rocks – scale of weathering – soils - landforms and processes associated with river, wind, groundwater and sea – relevance to civil engineering. Plate tectonics – Earth quakes – Seismic zones in India.

UNIT II MINEROLOGY

Physical properties of minerals – Quartz group, Feldspar group, Pyroxene - hypersthene and augite, Amphibole – hornblende, Mica – muscovite and biotite, Calcite, Gypsum and Clay minerals.

UNIT III PETROLOGY

Classification of rocks, distinction between Igneous, Sedimentary and Metamorphic rocks. Engineering properties of rocks. Description, occurrence, engineering properties, distribution and uses of Granite, Dolerite, Basalt, Sandstone, Limestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist.

UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHODS

Geological maps – attitude of beds, study of structures – folds, faults and joints – relevance to civil engineering. Geophysical methods – Seismic and electrical methods for subsurface investigations.

UNIT V APPLICATION OF GEOLOGICAL INVESTIGATIONS

Remote sensing for civil engineering applications; Geological conditions necessary for design and construction of Dams, Reservoirs, Tunnels, and Road cuttings - Hydrogeological investigations and mining - Coastal protection structures. Investigation of Landslides, causes and mitigation.

TOTAL: 45 PERIODS

TEXT BOOKS:

- Varghese, P.C., Engineering Geology for Civil Engineering Prentice Hall of India Learning Private Limited, New Delhi, 2012.
- 2. Venkat Reddy. D. Engineering Geology, Vikas Publishing House Pvt. Lt, 2010.
- 3. Gokhale KVGK, "Principles of Engineering Geology", B.S. Publications, Hyderabad 2011.

9

9

9

9

3 0 0 3

- 4. ChennaKesavulu N. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.
- 5. Parbin Singh. A "Text book of Engineering and General Geology", Katson publishing house, Ludhiana 2009.

REFERENCES:

- 1. Blyth F.G.H. and de Freitas M.H., Geology for Engineers, Edward Arnold, London, 2010.
- 2. Bell .F.G.. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
- 3. Dobrin, M.B "An introduction to geophysical prospecting", McGraw Hill, New Delhi, 1988.

EN6501MUNICIPAL SOLID WASTE MANAGEMENTL T P C

$3\ 0\ 0\ 3$

UNIT I SOURCES AND TYPES

Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO's.

UNIT II ON-SITE STORAGE AND PROCESSING

On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling.

UNIT III COLLECTION AND TRANSFER

Methods of Residential and commercial waste collection – Collection vehicles – ManpowerCollection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving.

UNIT IV OFF-SITE PROCESSING

Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and bio methanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL

Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor– Dumpsite Rehabilitation

8

8

12

TEXTBOOKS:

- 1. Tchobanoglous, G., Theisen, H. M., and Eliassen, R. "Solid. Wastes: EngineeringPrinciples and Management Issues". McGraw Hill, New York, 1993.
- 2. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981
- 3. Paul T Willams, "Waste Treatment and Disposal", John Wiley and Sons, 2000

REFERENCES:

- 1. Government of India, "Manual onMunicipalSolidWasteManagement", CPHEEO, Ministry of UrbanDevelopment, New Delhi, 2000.
- 2. Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001.
- 3. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996.
- 4. George Tchobanoglous and Frank Kreith"Handbook of Solidwaste Management", McGraw Hill, New York, 2002.

OAI551 ENVIRONMENT AND AGRICULTURE L T P C

3003

8

9

UNIT I ENVIRONMENTAL CONCERNS

Environmental basis for agriculture and food – Land use and landscape changes – Water quality issues – Changing social structure and economic focus – Globalization and its impacts – Agro ecosystems.

UNIT II ENVIRONMENTAL IMPACTS

Irrigation development and watersheds – mechanized agriculture and soil cover impacts – Erosion and problems of deposition in irrigation systems – Agricultural drainage and downstream impacts – Agriculture versus urban impacts.

UNIT III CLIMATE CHANGE

Global warming and changing environment – Ecosystem changes – Changing blue-green-grey water cycles – Water scarcity and water shortages – Desertification.

UNIT IV ECOLOGICAL DIVERSITY AND AGRICULTURE

10

Ecological diversity, wild life and agriculture – GM crops and their impacts on the environment – Insets and agriculture – Pollination crisis – Ecological farming principles – Forest fragmentation and agriculture – Agricultural biotechnology concerns.

UNIT V EMERGING ISSUES

Global environmental governance – alternate culture systems – Mega farms and vertical farms – Virtual water trade and its impacts on local environment – Agricultural environment policies and its impacts – Sustainable agriculture.

TOTAL: 45 PERIODS

10

TEXTBOOKS:

- 1. M.LakshmiNarasaiah, Environment and Agriculture, Discovery Pub. House, 2006.
- 2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005.

REFERENCES:

- 1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research Service, 2006.
- 2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues for the 21st century : proceedings of a symposium, Winrock International Institute for Agricultural Development, 1994.
- 3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific region; World Food Day Symposium, Bangkok, Thailand. 1989

CE8005 AIR POLLUTION AND CONTROL ENGINEERING L T P C3 0

UNIT I INTRODUCTION

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards –Ambient and stack sampling and Analysis of Particulate and Gaseous Pollutants.

UNIT II METEOROLOGY

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

11

6

03

Factors affecting Selection of Control Equipment – Gas Particle Interaction – Working principle, Design and performance equations of Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators – Operational Considerations.

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

Factors affecting Selection of Control Equipment – Working principle, Design and performance equations of absorption, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters – Process control and Monitoring - Operational Considerations.

UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

TOTAL: 45 PERIODS

TEXTBOOKS:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

REFERENCES:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol. VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", TataMcgraw Hill Publishing Company limited, 2007.
- 5. C.S.Rao, "Environmental Pollution Control Engineering", New Age International(P) Limited Publishers, 2006.

EE8703	RENEWABLE ENERGY SYSTEMS	L T P C
		3003

UNIT I RENEWABLE ENERGY (RE) SOURCES

Environmental consequences of fossil fuel use, Importance of renewable sources of energy,Sustainable Design and development, Types of RE sources, Limitations of RE sources,Present Indian and international energy scenario of conventional and RE sources.

10

9

UNIT II WIND ENERGY

Power in the Wind - Types of Wind Power Plants(WPPs)-Components of WPPs-Workingof WPPs-Siting of WPPs-Grid integration issues of WPPs.

UNIT III SOLAR PV AND THERMAL SYSTEMS

Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central ReceiverPower Plants, Solar Ponds.- Thermal Energy storage system with PCM- Solar Photovoltaicsystems : Basic Principle of SPV conversion - Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency &Quality of the Cell, series and parallel connections, maximum power point tracking, Applications.

UNIT IV **BIOMASS ENERGY**

Introduction-Bio mass resources -Energy from Bio mass: conversion processes-BiomassCogeneration-Environmental Benefits. Geothermal Energy: Basics. Direct Use, GeothermalElectricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine, Turbine theory, Essential components of hydroelectric system.

UNIT V **OTHER ENERGY SOURCES**

Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. WaveEnergy: Energy from waves, wave power devices. Ocean Thermal Energy Conversion(OTEC)- Hydrogen Production and Storage- Fuel cell : Principle of working- various types -construction and applications. Energy Storage System- Hybrid Energy Systems.

TOTAL : 45 PERIODS

CS8078	GREEN COMPUTING	L T P C
		3003
UNIT I FUNDAMENTAL	S	9

UNIT I FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment - Green computing: carbon foot print, scoop on power - Green IT Strategies: Drivers, Dimensions, and Goals - Environmentally Responsible Business: Policies, Practices, and Metrics.

UNIT II GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centers, Networks, and Devices - Green Business Process Management: Modeling, Optimization, and Collaboration - Green Enterprise Architecture -Environmental Intelligence - Green Supply Chains - Green Information Systems: Design and Development Models.

9

9

9

9

UNIT III GRID FRAMEWORK

Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconferencing and teleporting – Materials recycling – Best ways for Green PC – Green Data center – Green Grid framework.

UNIT IV GREEN COMPLIANCE

Socio-cultural aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, and Audits – Emergent Carbon Issues: Technologies and Future.

UNIT V CASE STUDIES

The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

EN8491	WATER SUPPLY ENGINEERING	LTPC
		3003

UNIT I SOURCES OF WATER

Public water supply system – Planning, Objectives, Design period, Population forecasting; Waterdemand – Sources of water and their characteristics, Surface and Groundwater – ImpoundingReservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.

UNIT II CONVEYANCE FROM THE SOURCE

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes – appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

UNIT III WATER TREATMENT

Objectives – Unit operations and processes – Principles, functions, and design of water treatmentplant units, aerators of flash mixers, Coagulation and flocculation –Clarifloccuator-Plate and tubesettlers - Pulsator clarifier - sand filters - Disinfection - Residue Management –Construction,Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

Water softening – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange– Membrane Systems – RO Reject Management - Iron and Manganese removal - Defluoridation -Construction and Operation & Maintenance aspects – Recent advances - MBR process

9

9

9

9

9

9

UNIT V WATER DISTRIBUTION AND SUPPLY

Requirements of water distribution – Components – Selection of pipe material – Service reservoirs – Functions – Network design – Economics – Analysis of distribution networks -Computerapplications – Appurtenances – Leak detection.Principles of design of water supply in buildings – House service connection – Fixtures andfittings, systems of plumbing and types of plumbing.

TOTAL: 45 PERIODS

TEXTBOOKS:

- 1. Garg, S.K. Environmental Engineering, Vol.IKhanna Publishers, New Delhi, 2010.
- 2. Modi, P.N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2010.
- 3. Punmia, B.C., Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Publications(P) Ltd., New Delhi, 2014.

REFERENCES:

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- Syed R. Qasim and Edward M. Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Learning Private Limited, New Delhi, 2009.

3003

UNIT I PLANNING AND DESIGN OF SEWERAGE SYSTEM

Characteristics and composition of sewage - population equivalent -Sanitary sewage flow estimation – Sewer materials – Hydraulics of flow in sanitary sewers – Sewer design – Storm drainage-Storm runoff estimation – sewer appurtenances – corrosion in sewers – prevention and control – sewage pumping-drainage in buildings-plumbing systems for drainage - Rain Waterting.

UNIT II PRIMARY TREATMENT OF SEWAGE

Objectives – Unit Operations and Processes – Selection of treatment processes – Onsitesanitation -Septic tank- Grey water harvesting – Primary treatment – Principles, functions and design of sewage treatment units - screens - grit chamber-primary sedimentation tanks – Construction, Operation and Maintenance aspects.

UNIT III SECONDARY TREATMENT OF SEWAGE

Objectives – Selection of Treatment Methods – Principles, Functions, - Activated Sludge Processand Extended aeration systems -Trickling filters– Sequencing Batch Reactor(SBR) – MembraneBioreactor

9

9

- UASB – Waste Stabilization Ponds – - Other treatment methods -Reclamation andReuse of sewage - Recent Advances in Sewage Treatment – Construction, Operation andMaintenance aspects.

UNIT IV DISPOSAL OF SEWAGE

Standards for- Disposal - Methods - dilution - Mass balance principle - Self purification of river-Oxygen sag curve - deoxygenation and reaeration - Streeter-Phelps model - Land disposal - Sewage farming - sodium hazards - Soil dispersion system.

UNIT V SLUDGE TREATMENT AND DISPOSAL

Objectives - Sludge characterization – Thickening - Design of gravity thickener- Sludge digestion Standard rate and High rate digester design- Biogas recovery – Sludge Conditioning and Dewatering – Sludge drying beds- ultimate residue disposal – recent advances.

TOTAL: 45 PERIODS

TEXTBOOKS:

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi,2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, LaxmiPublications, 2010.

REFERENCES:

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministryof Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering–Treatment and Reuse, Tata Mc.Graw-HillCompany, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C., 2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006.

CE8512 WATER AND WASTE WATER ANALYSIS LABORATORY L T P C

0042

List of Experiments:

- 1. Determination of pH, Turbidity and conductivity
- 2. Determination of Hardness
- 3. Determination of Alkalinity and Acidity
- 4. Determination of Chlorides

- 5. Determination of Phosphates and Sulphates
- 6. Determination of iron and fluoride
- 7. Determination of Optimum Coagulant dosage
- 8. Determination of residual chlorine and available chlorine in bleaching powder
- 9. Determination of Oil, and Grease
- 10. Determination of suspended, settleable, volatile and fixed solids
- 11. Determination Dissolved Oxygen and BOD for the given sample
- 12. Determination of COD for given sample
- 13. Determination of SVI of Biological sludge and microscopic examination
- 14. Determination of MPN index of given water sample

TOTAL: 60 PERIODS

CE8612 IRRIGATION AND ENVIRONMENTAL ENGINEERING DRAWING L T P C

0042

9

6

6

9

PART A: IRRIGATION ENGINEERING

1. TANK COMPONENTS

Fundamentals of design - Tank surplus weir – Tank sluice with tower head - Drawings showingfoundation details, plan and elevation

2. IMPOUNDING STRUCTURES

Design principles - Earth dam - Profile of Gravity Dam

3. CROSS DRAINAGE WORKS

General design principles - Aqueducts – Syphon aqueduct (Type III) – Canal drop (Notch Type) – Drawing showing plan, elevation and foundation details.

4. CANAL REGULATION STRUCTURES

General Principles - Direct Sluice - Canal regulator - Drawing showing detailed plan, elevation andfoundation details.

PART B: ENVIRONMENTAL ENGINEERING

1. WATER SUPPLY AND TREATMENT

Design and Drawing of flash mixer, flocculator, clarifier – Rapid sand filter – Service reservoirs – Pumping station – House service connection for water supply and drainage.

2. SEWAGE TREATMENT & DISPOSAL

Design and Drawing of screen chamber - Grit channel - Primary clarifier - Activated sludgeprocess – Aeration tank – Trickling filter – Sludge digester – Sludge drying beds – Septic tanksand disposal arrangements.

TOTAL: 60 PERIODS

TEXTBOOKS:

- 1. Satya Narayana Murthy Challa, "Water Resources Engineering: Principles and Practice",
- 1. New Age International Publishers, New Delhi, 2002.
- 2. Garg, S.K., "Irrigation Engineering and Design of Structures", New Age International
- 3. Publishers, New Delhi, 1997.
- 4. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999.
- 5. Manual on "Sewerage and Sewage Treatment Systems- Part A, B and C" CPHEEO,
- 6. Ministry of Urban Development, Government of India, New Delhi, 2013.

REFERENCES:

- Mohanakrishnan. A, "A few Novel and Interesting Innovative Irrigation Structures: Conceived, Designed and Executed in the Plan Projects in Tamil Nadu", Publ. No. 44 and Water Resources Development & Management Publ.No.43, IMTI Thuvakudy, Trichy, 2011.
- 2. Raghunath, H.M. "Irrigation Engineering", Wiley India Pvt. Ltd., New Delhi, 2011.
- 3. Sharma R.K., "Irrigation Engineering and Hydraulic Structures", Oxford and IBH Publishing Co., New Delhi, 2002.
- 4. Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGraw-HillBook Co., New Delhi, 1995.
- 5. Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse", Tata McGraw-Hill,New Delhi, 2010.
- 6. Qasim,S.R., Motley, E.M and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2009.
- Qasim, S. R. "Wastewater Treatment Plants, Planning, Design & Operation", CRCPress, New York, 2010

ME8792	POWER PLANT ENGINEERING	LTPC
		3003

UNIT I COAL BASED THERMAL POWER PLANTS

9

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants –Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogenerationsystems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and GasTurbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cyclesystems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working ofNuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANadaDeuterium-Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors.Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants – Classification, Typical Layout and associated components includingTurbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV),Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTALISSUES OF POWER PLANTS 9

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollutioncontrol technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TEXT BOOK:

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing CompanyLtd., 2008.

REFERENCES:

- 2. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 3. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", SecondEdition, Standard Handbook of McGraw – Hill, 1998.

EE8712RENEWABLE ENERGY SYSTEMSLABORATORYL T P C

0042

9

9

LIST OF EXPERIMENTS

- 1. Simulation study on Solar PV Energy System.
- 2. Experiment on "VI-Characteristics and Efficiency of 1kWp Solar PV System".
- 3. Experiment on "Shadowing effect & diode based solution in 1kWp Solar PV System".
- Experiment on Performance assessment of Grid connected and Standalone 1kWp SolarPower System.
- 5. Simulation study on Wind Energy Generator.
- 6. Experiment on Performance assessment of micro Wind Energy Generator.
- 7. Simulation study on Hybrid (Solar-Wind) Power System.
- 8. Experiment on Performance Assessment of Hybrid (Solar-Wind) Power System.
- 9. Simulation study on Hydel Power.
- 10. Experiment on Performance Assessment of 100W Fuel Cell.
- 11. Simulation study on Intelligent Controllers for Hybrid Systems.

TOTAL: 60 PERIODS

TE4002	ENERGY RESOURCES	LTPC
		3003

UNIT I COMMERCIAL ENERGY

Coal, Oil, Natural gas, Nuclear power and Hydro - their utilization pattern in the past, present andfuture projections of consumption pattern - Sector-wise energy consumption – environmentalimpact of fossil fuels – Energy scenario in India – Growth of energy sector and its planning inIndia.

UNIT II SOLAR ENERGY

Solar radiation at the earth's surface – solar radiation measurements – estimation of averagesolar radiation - solar thermal flat plate collectors - concentrating collectors – solar thermalapplications - heating, cooling, desalination, drying, cooking, etc – solar thermal electric powerplant - principle of photovoltaic conversion of solar energy, types of solar cells – Photovoltaicapplications: battery charger, domestic lighting, street lighting, water pumping etc - solar PVpower plant – Net metering concept.

UNIT III WIND ENERGY

Nature of the wind – power in the wind – factors influencing wind – wind data and energyestimation - wind speed monitoring - wind resource assessment - Betz limit - site selection – windenergy conversion devices - classification, characteristics, applications – offshore wind energy -Hybrid systems - safety and environmental aspects – wind energy potential and installation inIndia - Repowering concept.

9

UNIT IV BIO-ENERGY

Biomass resources and their classification - Biomass conversion processes - Thermo chemicalconversion - direct combustion – biomass gasification - pyrolysis and liquefaction – biochemicalconversion - anaerobic digestion - types of biogas Plant - applications - alcohol production frombiomass – bio diesel production – Urban waste to energy conversion - Biomass energyprogramme in India.

UNIT V OTHER TYPES OF ENERGY

Ocean energy resources - principle of ocean thermal energy conversion (OTEC) - ocean thermalpower plant - ocean wave energy conversion - tidal energy conversion - small hydro -geothermal energy - geothermal power plant - hydrogen production and storage - Fuel cell -principle of working - various types - construction and applications

TOTAL = 45 PERIODS

COURSE OUTCOMES

	ENVIRONMENTAL SCIENCE AND ENGINEERING
CO1	Illustrate the features of Ecosystem& biodiversity
CO2	Choose pollution control methods and waste management.
CO3	Apply the environmental concepts for conservation and protection of natural resources.
CO4	Demonstrate the impact of social issues on environment
CO5	Demonstrate the impact of human on environment.

	ENGINEERING GEOLOGY	
CO1	Explain the geological features of the earth.	
CO2	Demonstrate thephysical properties of minerals.	
CO3	Identify common rocks based on their physical and engineering properties.	
CO4	Illustrate the various geological structures and interpretation of geological data for subsurface investigations	
CO5	Explain the application of geological investigation in projects such as dams, tunnels, bridges, roads, airport and harbor	

MUNICIPAL SOLID WASTE

CO1	Explain the pollution from major industries including the sources and characteristics of
	pollutants
CO2	Explain to plan minimization of industrial wastes
CO3	Describe to design facilities for the processing and reclamation of industrial waste
	water
CO4	Describe the residue management
CO5	Explain the hazardous waste managenent

	AIR POLLUTION AND CONTROL ENGINEERING	
CO1	Describe the major sources of air pollution and their effects.	
CO2	Explain the atmospheric diffusion theories	
CO3	Explain the various methods to control particulate contaminants.	
CO4	Explain the various methods to control gaseous contaminants.	
CO5	Outline the sources and effects of noise pollution.	

ENVIRONMENTAL AND AGRICULTURE	
CO1	Explain about the water quality issues and its impacts.
CO2	Discuss the role of mechanization in agricultural sustainability.
CO3	List the various impacts of global warming on agriculture.
CO4	Describe the pollination crisis, types and the role of pollinators in agriculture.
CO5	Explain the agricultural environment policies and its impacts.

RENEWABLE ENERGY SYSTEMS		
CO1	Explain the renewable energy sources and types.	
CO2	Explain the working of Wind power plant.	
CO3	Describe the performance of solar PV and thermal system.	
CO4	Discuss about Biomass energy.	
CO5	Explain the working principle of Tidal energy and fuel cell.	

GREEN COMPUTING		
C01	Acquire knowledge to adopt green computing practices to minimize negative impacts on the environment	
CO2	Enhance the skill in energy saving practices in their use of hardware.	
CO3	Evaluate technology tools that can reduce paper waste and carbon footprint by the stakeholders.	
CO4	Understand the ways to minimize equipment disposal requirements.	
CO5	Summarize various case studies related to green computing.	

WATER SUPPLY ENGINEERING		
CO1	Explain various parameters of water and source of water	
CO2	Explain various parameters of conveyance of water.	
CO3	Demonstrate and apply the design principles in designing the various functional units in water treatment	
CO4	Summarize and design the various functional units in advanced water treatment techniques.	
CO5	Explain basic structure of drinking water supply systems and design the component systems.	

WASTEWATER ENGINEERING		
CO1	Explain the concepts of sewage systems and design of sewers	
CO2	Explain primary design of the unit operations and processes that are used insewage treatment	
CO3	Explain secondary design of the unit operations and processes that are used in sewage treatment	
CO4	Interpret the standard methods for disposal of sewage.	
CO5	Relate disposal of sludge and its management	

CE8512- WATER AND WASTE WATER ANALYSIS

CO1	Analyse the physical characteristics viz. colour, turbidity, hardness and conductivity of a given water sample
CO2	Analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity
CO3	Analyse the chemical characteristics of a given water sample viz. chlorides, Iron, Available Chlorine and sulphates content to assess its suitability for drinking purposes
CO4	Analyse the Dissolved oxygen content, Biological Oxygen Demand and Chemical Oxygen Demand in waste water
CO5	Estimate the optimum dosage of alum using Jar test
CO6	Exhibit ethical principles in engineering practices
CO7	Perform task as individual and /or team member to manage the task in time
CO8	Express the engineering activities with effective presentation and report
CO9	Interpret the finding with appropriate technological /research citation

IRRIGATION AND ENVIRONMENTAL ENGINEERING DRAWING		
CO1	State the general layout for water supply scheme	
CO2	Compute and draw various units of water treatment plants	
CO3	Choose the various irrigation structures	
CO4	Implement the general layout for water supply scheme	
CO5	Discuss the general layout of waste water treatment process	
CO6	Exhibit ethical principles in engineering practices	
CO7	Perform task as individual and /or team member to manage the task in	
	time	
CO8	Express the engineering activities with effective presentation and report	
CO9	Interpret the finding with appropriate technological /research citation	

POWER PLANT ENGINEERING

CO1	Demonstrate the construction and working of coal based thermal power plant.
CO2	Explain the layout, construction and working of diesel, gas and combined cycle power plant.
CO3	Describe the construction and working of Nuclear power plant.
CO4	Explain the construction and working of renewable energy sources.
CO5	Estimate energy calculation and environment related issues in power sectors.

RENEWABLE ENERGY SYSTEMS LABORATORY		
CO1	Analyze the Renewable Energy Systems.	
CO2	Analyze the characteristics of Solar PV System	
CO3	Design an experiment on Shadowing effect and diode-based solution for Solar	
	PVSystem	
CO4	Explain the basics of Intelligent Controllers for Hybrid Systems	
CO5	Analyze the current and possible future role of Renewable Energy Sources.	
CO6	Estimate the optimum dosage of alum using Jar test	
CO7	Exhibit ethical principles in engineering practices	
CO8	Perform task as individual and /or team member to manage the task in time	
CO9	Express the engineering activities with effective presentation and report	

Details of course related to Professional Ethics

List of courses

- 1. Professional Ethics in Engineering
- 2. Contract Laws and Regulations
- 3. Project Safety Management
- 4. Construction Project Management
- 5. Research Methodology and IPR
- 6. Business Ethics

Course Name and code

Course Name	Course Code
1.Professional Ethics in Engineering	GE6075
2. Contract Laws and Regulations	CN4203
3.Project Safety Management	CN4005
4. Construction Project Management	CN4002
5.Research Methodology and IPR	RM4151
6.Business Ethics	BA4211

COURSE OBJECTIVES

1. Professional Ethics in Engineering

To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

2.Contract Laws and Regulations

- \checkmark To study the various types of construction contract and their legal aspects and provisions.
- \checkmark To learn concepts in Tenders.
- ✓ To learn concepts in Arbitration.
- ✓ To learn concepts in legal requirements
- \checkmark To study the concepts in labour regulations.

3.Project Safety Management

✓ To study and understand the various safety concepts and requirements applied to construction projects.

4. Construction Project Management

 To study the various management techniques for successful completion of construction projects Project Management

5. Research Methodology and IPR

✓ Ability to manage Intellectual Property portfolio to enhance the value of the firm.

6.Business Ethics

 \checkmark To enable the learners to have exposure on business ethics and ethical business perspectives.

DETAILED SYLLABUS OF EACH COURSE

GE6075	PROFESSIONAL ETHICS IN ENGINEERING	LT P C
		3003

UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk -Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

TOTAL: 45 PERIODS

TEXT BOOKS:

9

8

9

10

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics -Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt.Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

CN4203 **CONTRACT LAWS AND REGULATIONS** LTPC 3003

UNIT I CONSTRUCTION CONTRACTS

Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents - International Contract Document - Standard Contract Document - Law of Torts.

UNIT II TENDERS

Prequalification - Bidding - Accepting - Evaluation of Tender from Technical, Contractual and Commercial Points of View - Contract Formation and Interpretation - Potential Contractual Problems - World Bank Procedures and Guidelines - Tamilnadu Transparency in Tenders Act.

UNIT III ARBITRATION

Comparison of Actions and Laws - Agreements - Subject Matter - Violations - Appointment of Arbitrators - Conditions of Arbitration - Powers and Duties of Arbitrator - Rules of Evidence -Enforcement of Award - Costs.

UNIT IV LEGAL REQUIREMENTS

Insurance and Bonding - Laws Governing Sale, Purchase and Use of Urban and Rural Land - Land Revenue Codes - Tax Laws - Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs - Legal Requirements for Planning - Property Law - Agency Law - Local Government Laws for Approval - Statutory Regulations.

9

9

9

UNIT V LABOUR REGULATIONS

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamilnadu Factory Act – Child Labour Act - Other Labour Laws.

REFERENCES:

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, 2000.
- 2. Jimmie Hinze, Construction Contracts, McGraw Hill, 3rd Edition, 2013.
- 3. Ali D. Haidar, Handbook of Contract Management in Construction, Springer Cham, 1st Edition, 2021.
- 4. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) Private Limited, 4th Edition 2015.
- 5. Dharmendra Rautray, Principles of Law of Arbitration in India, Wolters Kluwer, 2018.

CN4005	PROJECT SAFETY MANAGEMENT	LTPC

UNIT I CONSTRUCTION ACCIDENTS

Accidents and their Causes – Human Factors in Construction Safety – Costs of Construction Injuries – Occupational and Safety Hazard Assessment – Legal Implications.

UNIT II SAFETY PROGRAMMES

Problem Areas in Construction Safety – Elements of an Effective Safety Programme – Job-Site Safety Assessment – Safety Meetings – Safety Incentives.

UNIT III CONTRACTUAL OBLIGATIONS

Safety in Construction Contracts – Substance Abuse – Safety Record Keeping - Occupational Safety and Health Administration Manuals, Laws and Act - Indian and International Practices.

UNIT IV DESIGNING FOR SAFETY

Safety Culture – Safe Workers – Safety and First Line Supervisors – Safety and Middle Managers – Top Management Practices, Company Activities and Safety – Safety Personnel – Sub contractual Obligation – Project Coordination and Safety Procedures – Workers Compensation.

UNIT V OWNERS' AND DESIGNERS' OUTLOOK

Owners and Designers – Roles and responsibility in ensuring safety – Preparedness – Role of designer in ensuring safety – Safety clause in design document.

9

9

9

3003

9

CONSTRUCTION PROJECT MANAGEMENT

LT P C

3003

9

9

UNIT I FUNDAMENTALS OF CONSTRUCTION PROJECT MANAGEMENT

Introduction of construction Project Management – Construction Scope – Construction Project Characteristics - Project development and Life Cycle – Construction Project Management Practice - Roles and Functions and Responsibility of Construction Managers and Major causes of Project failure.

UNIT II PLANNING AND ORGANIZING CONSTRUCTION PROJECT

Construction Project organization – Planning Project work Scope and integration Processes - Defining Project Activities - Scheduling Project - CPM, PERT, Precedence Network Analysis – Planning and organizing project resources such as manpower, material, equipment, Time and cost for construction site.

UNIT III DESIGN AND CONSTRUCTION PROCESS

Design and Construction as an Integrated System – Innovation, Economic and Technological Feasibility - Design Methodology - Functional Design - Construction Site Environment - Case Studies - Project Clearance requirement, Procedure and Necessary Documentation for Major Works Like Dams, Multistoried Structures, Ports, Tunnels.

UNIT IV PROJECT RESOURCES UTILIZATION

Labor productivity variations, productivity improvement - work study. Materials purchase & inventory control - Construction Equipment - Choice of Equipment and Standard Production Rates – Time management and Cost management - Measuring project progress & performance – Tools and Techniques

UNIT V RISK MANAGEMENT AND PROJECT CONTROLLING

Risks management at construction site - Controlling resource productivity – Schedule and Cost Controlling system – Earned value management system – Project Management Information systems.

RM4151RESEARCH METHODOLOGY AND IPRL T P C

2002

UNIT I RESEARCH DESIGN

Overview of research process and design, Use of Secondary and exploratory data to answer theresearch question, Qualitative research, Observation studies, Experiments and Surveys.

UNIT II DATA COLLECTION AND SOURCES

6

6

9

9

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods.Data -Preparing, Exploring, examining and displaying.

UNIT III DATA ANALYSIS AND REPORTING

Overview of Multivariate analysis, Hypotheses testing and Measures of Association. PresentingInsights and findings using written reports and oral presentation.

UNIT IV INTELLECTUAL PROPERTY RIGHTS

Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPRdevelopment process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPRAgreement, Trademark, Functions of UNESCO in IPR maintenance.

UNIT V PATENTS

Patents – objectives and benefits of patent, Concept, features of patent, Inventive step,Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent,Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents,Registration of patent agents.

TOTAL :30 PERIODS

REFERENCES

- 1. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 11e (2012).
- 2. Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
- David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
- 4. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.

BA4211	BUSINESS ETHICS (SEMINAR)	L T P C

0042

- The following is the list of topics suggested for preparation and presentation by students twiceduring the semester.
- This will be evaluated by the faculty member(s) handling the course and the final marks areconsolidated at the end of the semester. No end semester examination is required for thiscourse.
- 1) Individual Culture and Ethics

6

6

- 2) Ethical codes of conduct and value Systems
- 3) Loyalty and Ethical Behaviour, Ethical decision making
- 4) Ethical business issues and solutions
- 5) Corporate Social Responsibilities of Business

TOTAL: 60 PERIODS

COURSE OUTCOME

PROFESSIONAL ETHICS IN ENGINEERING	
CO1	Illustrate the core values that enrich the ethical behavior of an engineer.
CO2	Discuss the importance of moral issues and theories of the profession
CO3	Associate the code of ethics in real time application as responsible experimenters with various social issues.
CO4	Explain the concepts of Professional rights, Employee rights, Confidentiality, conflicts of interest and Intellectual Property Rights
CO5	Explain the global ethical issues related to various work place situation.

CONTRACT LAWS AND REGULATIONS	
CO1	Design the construction contracts
CO2	Develop a skill for the tendering process.
CO3	Explain the duties of the arbitrator.
CO4	Develop an idea on the various legal requirements to be met in relation to land and construction.
CO5	Identify and apply the provisions provided in the labour welfare schemes.

PROJECT SAFETY MANAGEMENT	
CO1	Develop the knowledge on accidents and their causes
CO2	Develop the knowledge about safety programmes safety programme job-site safety assessment.
CO3	Apply the knowledge contractual obligations
CO4	Explain about designing for safety and safety procedures
CO5	Develop the knowledge owners' and designers responsibility

CONSTRUCTION PROJECT MANAGEMENT

C01	Explain the stages involved in a project and analyze the obligatory services to be
	taken up while performing a construction activity.
CO2	Apply the scheduling techniques for planning construction project
CO3	Develop the ability to integrate design and construction Process
CO4	Analyzing Resources utilization and resource productivity
CO5	Assess the risk and controlling systems using project management Information
	system.

BUSINESS ETHICS	
CO1	handle issues of business ethics and offer solutions ethical perspectives
CO2	able to apply the basic concepts of Indian ethos and value systems at work.
CO3	can handle issues of business ethics and offer solutions in ethical perspectives
CO4	are professionally efficient and skilful in value systems and culture
CO5	are capable in ethically manage business towards well being of the society

Details of course related to Human Values (R2013)

List of courses

- 1. Human Rights
- 2. Indian Ethos

Course Name and code

1.Human Rights	GE6084
2.Indian Ethos	BA4111

Course Objectives:

1.Human Rights

✓ To sensitize the Engineering students to various aspects of Human Rights.

2. Indian Ethos

✓ To enable the learners in understanding of the basic concepts of Indian Ethos and familiariseabout ethical behaviour and value systems at work.

Detailed Syllabus of each course

GE6084	HUMAN RIGHTS	L T P C
		3003
UNIT I		9

UNIT I

Human Rights - Meaning, origin and Development. Notion and classification of Rights - Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II

Evolution of the concept of Human Rights Magana carta - Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III

Theories and perspectives of UN Laws - UN Agencies to monitor and compliance.

UNIT IV

9

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

BA4111 INDIAN ETHOS (SEMINAR) L T P C

0042

- The following is the list of topics suggested for preparation and presentation by students twiceduring the semester.
- This will be evaluated by the faculty member(s) handling the course and the final marks areconsolidated at the end of the semester. No end semester examination is required for thiscourse.
- 1) Indian Ethos and Personality Development
- 2) Work ethos and ethics for Professional Managers
- 3) Indian Values, Value Systems and Wisdom for modern managers
- 4) Ethos in leadership development
- 5) Indian system of learning Gurukul system of learning, Law of humility, Law of growth,Law of responsibility

TOTAL: 60 PERIODS

COURSE OUTCOME

	HUMAN RIGHTS
CO1	Outline the basic rights, liberty, equality of Human and classification of rights.
CO2	Express the various concept of human rights Magana and Universal Declaration
CO3	Explain the theories and perspectives of UN Laws.
CO4	Outline the human rights in India and constitutional Provisions/ Guarantees.

CO5	Explain the various Implementation of Human Rights, National and State Human Rights
005	Commission and Judiciary.

	INDIAN ETHOS (SEMINAR)
CO1	apply the basic concepts of Indian ethos and value systems at work.
CO2	handle issues of business ethics and offer solutions in ethical perspectives
CO3	professionally efficient and skilful in value systems and culture
CO4	capable in ethically manage business towards well being of the society
CO5	socially effective in undertaking business responsibilities